Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (9): 1408-1414    DOI: 10.16511/j.cnki.qhdxxb.2023.22.018
  车辆与交通 本期目录 | 过刊浏览 | 高级检索 |
地铁线路储能装置与牵引装置联合优化配置方法
刘安邦1, 陈曦1, 赵千川1, 李博睿2
1. 清华大学 自动化系, 智能与网络化系统研究中心, 北京信息科学与技术国家研究中心, 北京 100084;

2. 中国国家高速列车青岛技术创新中心, 青岛 266000
Optimization method for allocations of energy storage systems and tractions for metro systems
LIU Anbang1, CHEN Xi1, ZHAO Qianchuan1, LI Borui2
1. Beijing National Research Center for Information Science and Technology, Center for Intelligent and Networked Systems (CFINS), Department of Automation, Tsinghua University, Beijing 100084, China;
2. National Innovation Center of High Speed Train, Qingdao 266000, China
全文: PDF(2388 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 在城市轨道交通系统中, 列车牵引用电的费用在总运营费用中占比较高。 在直流供电系统中接入储能装置(例如超级电容)吸收利用列车的再生制动能量, 能够减少牵引用电的开销。 储能装置和牵引装置的配置方案(位置与容量)会显著影响能量的吸收与利用效率。 为了在有限储能与牵引资源约束下最大化再生制动能量的吸收利用效率, 该文提出一种地铁线路储能装置与牵引装置的联合优化配置方法, 将优化配置问题建模为仿真优化问题, 开发了基于序优化的问题求解方法以获得问题足够好的解。 在青岛地铁某线路上的测试结果显示: 相比于依经验配置, 优化配置方案可以减少6.1%的牵引能耗。 该方法不仅能有效配置储能牵引资源, 还能应用于解决地铁线路中的其他复杂优化问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘安邦
陈曦
赵千川
李博睿
关键词 城市轨道交通储能装置和牵引装置优化配置基于仿真的优化模型序优化    
Abstract:[Objective] Urban metro systems are the most important public transport system in many countries. These systems are associated with high speed, large capacity, and punctuality. However, traction energy costs account for a high proportion of the total operating cost. Thus, energy storage systems (ESSs), such as supercapacitors, have been recently introduced to collect and utilize the renewable energy generated by trains. Specifically, renewable energy is generated when a train brakes, and this energy can be collected using an ESS. The collected energy can later be released and used to start a train. Thus, this approach reduces the energy consumed by the entire system. The generated renewable energy and the energy used for starting a train are different in different stations. Therefore, the allocations (i.e., positions and capacities) of the ESSs and the traction substations can significantly affect the efficiency of energy collection and utilization. Hence, it is essential to optimize such allocations, but this process is difficult due to the complicated features of the problem. Most of the existing studies have considered either ESSs or traction substations in their optimization model and have not considered joint optimization. In addition, these studies have used rule-based methods or metaheuristics as solution methodologies which cannot quantified the qualities of the solutions obtained.[Methods] In this paper, the allocations of the ESSs and the traction substations are jointly optimized. We first model the devices in the power supply network as ideal components and then build a simulation model that can provide the current and the voltage at each position of the network. Based on the simulation model, we develop a simulation optimization problem for the energy consumption of the line, with the upper limits of voltage fluctuation being considered as constraints. Due to the complexity of the simulation optimization model, evaluating the objective function once is computationally expensive. Thus, we develop a solution method based on ordinal optimization theory to efficiently solve the optimization problems. We establish a crude model, which has low computational requirements and use it to obtain a set of candidate solutions. Then, through the evaluation of the ordered performance curve and error bounds, a good enough solution is selected from the candidate solutions.[Results] The testing results obtained on a metro line in Qingdao demonstrate that the optimized configuration can reduce the traction energy consumption by 6.1% when compared to the empirical configuration. Moreover, our results are better than those obtained by only optimizing the allocation of the ESSs.[Conclusions] To reduce the energy consumption of urban metro systems, this paper proposes a model and a solution method for optimizing the allocations of ESSs and traction substations. The effectiveness of our method is proven based on the numerical results. Our proposed method can be used to optimize other problems associated with the urban metro system, such as the optimization of charging and discharging strategies for supercapacitors. Because the train timetable can affect the collection and utilization of the regenerative braking energy, the joint optimization of the timetable and allocations of ESSs requires further investigation.
Key wordsurban metro systems    allocations of energy storage systems and tractions    simulation-based optimization model    ordinal optimization
收稿日期: 2022-09-27      出版日期: 2023-08-19
基金资助:国家重点研发计划项目(2022YFB4300502); 国家高速列车技术创新中心研发项目(CX/KJ2020-006)
通讯作者: 陈曦,副研究员,E-mail:bjchenxi@tsinghua.edu.cn      E-mail: bjchenxi@tsinghua.edu.cn
作者简介: 刘安邦(1996-),男,博士研究生。
引用本文:   
刘安邦, 陈曦, 赵千川, 李博睿. 地铁线路储能装置与牵引装置联合优化配置方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1408-1414.
LIU Anbang, CHEN Xi, ZHAO Qianchuan, LI Borui. Optimization method for allocations of energy storage systems and tractions for metro systems. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1408-1414.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.018  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I9/1408
  
  
  
  
  
  
  
  
[1] 王彬, 杨中平, 林飞, 等. 超级电容储能装置容量配置影响因素分析[J]. 都市快轨交通, 2014, 27(3): 18-22. WANG B, YANG Z P, LIN F, et al. Impact factors analysis of capacity configuration of super-capacitor energy storage device[J]. Urban Rapid Rail Transit, 2014, 27(3): 18-22. (in Chinese)
[2] WANG B, YANG Z P, LIN F, et al. An improved genetic algorithm for optimal stationary energy storage system locating and sizing[J]. Energies, 2014, 7(10): 6434-6458.
[3] 陈怀鑫, 杨中平, 林飞, 等. 基于遗传算法的城轨交通超级电容储能装置能量管理和容量配置优化研究[J]. 铁道学报, 2019, 41(9): 59-66. CHEN H X, YANG Z P, LIN F, et al. Management and configuration for stationary super-capacitor energy storage system applied in urban rail transit based on genetic algorithm[J]. Journal of the China Railway Society, 2019, 41(9): 59-66. (in Chinese)
[4] LIAN Z G, JIAO B, GU X S. A similar particle swarm optimization algorithm for job-shop scheduling to minimize makespan[J]. Applied Mathematics and Computation, 2006, 183(2): 1008-1017.
[5] LI B B, WANG L. A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2007, 37(3): 576-591.
[6] TAMILARASI A, KUMAR T. An enhanced genetic algorithm with simulated annealing for job-shop scheduling[J]. International Journal of Engineering, Science and Technology, 2010, 2(1): 144-151.
[7] SHANG Z Q, XU K, LIU Y, et al. A broadband solar radio dynamic spectrometer working in the millimeter-wave band[J]. The Astrophysical Journal Supplement Series, 2022, 258(2): 25.
[8] NOUIRI M, BEKRAR A, JEMAI A, et al. An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem[J]. Journal of Intelligent Manufacturing, 2018, 29(3): 603-615.
[9] HO Y C. An explanation of ordinal optimization: Soft computing for hard problems[J]. Information Sciences, 1999, 113(3-4): 169-192.
[10] HO Y C, SREENIVAS R S, VAKILI P. Ordinal optimization of DEDS[J]. Discrete Event Dynamic Systems, 1992, 2(1): 61-88.
[11] LAU T W E, HO Y. Universal alignment probabilities and subset selection for ordinal optimization[J]. Journal of Optimization Theory and Applications, 1997, 93(3): 455-489.
[12] LEE L L, LAU T W E, HO Y C. Explanation of goal softening in ordinal optimization[J]. IEEE Transactions on Automatic Control, 1999, 44(1): 94-99.
[13] LIN S Y, HO Y C, LIN C H. An ordinal optimization theory-based algorithm for solving the optimal power flow problem with discrete control variables[J]. IEEE Transactions on Power Systems, 2004, 19(1): 276-286.
[14] YANG Z P, ZHU F Q, LIN F. Deep-reinforcement- learning-based energy management strategy for super- capacitor energy storage systems in urban rail transit[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1150-1160.
[15] LIU A B, LUH P B, BRAGIN M A, et al. Ordinal-optimization concept enabled decomposition and coordination of mixed-integer linear programming problems[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5051-5058.
[16] SHIN D, BROADIE M, ZEEVI A. Practical nonparametric sampling strategies for quantile-based ordinal optimization[J]. INFORMS Journal on Computing, 2022, 34(2): 752-768.
[17] MA T, TIAN F, DONG B. Ordinal optimization-based performance model estimation method for HDFS[J]. IEEE Access, 2020, 8: 889-899.
[18] HILDEBRAND F B. Introduction to numerical analysis[M]. 2nd ed. Mineola, USA: Dover Publications, 1987.
[19] 李子浩, 田向亮, 黎忠文, 等. 基于客流规律的地铁车站客流风险分析[J]. 清华大学学报(自然科学版), 2019, 59(10): 854-860. LI Z H, TIAN X L, LI Z W, et al. Risk analysis of metro station passenger flow based on passenger flow patterns[J]. Journal of Tsinghua University (Science & Technology), 2019, 59(10): 854-860. (in Chinese)
[20] 李瑞敏, 王长君. 智能交通管理系统发展趋势[J]. 清华大学学报(自然科学版), 2022, 62(3): 509-515. LI R M, WANG C J. Development of advanced traffic management systems[J]. Journal of Tsinghua University (Science & Technology), 2022, 62(3): 509-515. (in Chinese)
[21] XING T, YAN H, SUN K L, et al. Honeycomb: An open-source distributed system for smart buildings[J]. Patterns, 2022, 3(11): 100605.
[1] 侯本伟, 游丹, 范世杰, 许成顺, 钟紫蓝. 基于网络效率的城市轨道交通网络抗震韧性评估[J]. 清华大学学报(自然科学版), 2024, 64(3): 509-520.
[2] 马壮林, 杨兴, 胡大伟, 谭晓伟. 城市轨道交通车站客流特征影响程度分析[J]. 清华大学学报(自然科学版), 2023, 63(9): 1428-1439.
[3] 侯博文,曾钦娥,费琳琳,李佳静. 城市轨道交通地下车站站台噪声评价方法[J]. 清华大学学报(自然科学版), 2021, 61(1): 57-63.
[4] 程辉航, 刘畅, 陈俊沣, 钟茂华. 全自动运行城市轨道交通车站噪声评价[J]. 清华大学学报(自然科学版), 2020, 60(1): 18-24.
[5] 付骁鑫, 江永亨, 黄德先, 王京春, 黄开胜. 基于最优计算量分配的公路轨迹规划[J]. 清华大学学报(自然科学版), 2016, 56(3): 273-280.
[6] 张智慧, 张剑寒. 城市轨道交通PPP项目运营补贴测算[J]. 清华大学学报(自然科学版), 2016, 56(12): 1327-1332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn