Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (6): 874-881    DOI: 10.16511/j.cnki.qhdxxb.2023.22.022
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
基于二维Archimedean copula函数的热带气旋风雨联合概率分析
叶妍婷1,2, 龚俊强1, 张海霞2, 栗健3
1. 浙江省金华市气象局, 金华 321000;
2. 北京师范大学 地理科学学部, 灾害风险科学研究院, 北京 100875;
3. 清华大学 工程物理系, 公共安全研究院, 北京 100084
Joint probability analysis of tropical cyclone wind and precipitation with the Archimedean copula function
YE Yanting1,2, GONG Junqiang1, ZHANG Haixia2, LI Jian3
1. Jinhua Meteorology Bureau of Zhejiang Province, Jinhua 321000, China;
2. Institute of Disaster Risk Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;
3. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(3764 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 热带气旋是典型的多致灾因子事件,探究各致灾因子间的关系可为热带气旋综合危险性评估等研究奠定基础。该研究选取1951—2015年热带气旋登陆中国时最大风速(MWS)和总降雨量(TP)两个致灾因子,构建两者的边缘概率分布,并基于二维Archimedean copula函数构建两者的联合概率分布,分析了联合概率分布特征以及在MWS已知条件下TP的条件概率特征。其中,最优的边缘概率分布和copula函数通过5%置信度的K-S检验和离差平方和最小法(OLS)确定。研究发现: MWS和TP分别符合Weibull和Gamma分布,最优连接函数为Gumbel copula,风雨致灾危险性同时强(弱)的台风发生概率要高于仅单个致灾因子强的台风;台风风速已知,则风速越大,最可能发生的TP越大。若将TP∈[1 000,2 000]×108 m3定义为台风强降雨,当MWS小于等于60 m/s时,风速越大,强降雨发生概率越大;当MWS大于60 m/s,在达到该阈值前,风速越大强降雨发生概率越大,在超过该阈值后,风速越大强降雨的发生概率越小。对于任意TP,均存在MWS阈值,且该阈值随着TP增加而增大。该研究提出的方法与得到的结果能为台风灾害应急管理和防灾减灾等提供理论和技术支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶妍婷
龚俊强
张海霞
栗健
关键词 copula函数热带气旋风雨组合联合概率    
Abstract:[Objective] Tropical cyclone (TC) is one of the biggest threats to life and assets in coastal areas. TC is a stochastic event characterized by various hazards, such as strong wind, heavy rain, storm surge, and flooding, which can cause significant impacts individually or in combination. Exploring the relationship between the multiple attributes of TC can help estimate the severity of TC and aid in the emergency response and risk management. Strong wind and heavy rain are the two most severe hazards of TC disasters. Generally, TC weakens rapidly after landfall due to the mountainous terrains in coastal areas, and its intensity (wind) decays within a very short period. The maximum wind speed (MWS) of the TC at landfall reflects the threats posed by the strong winds of the cyclone. MWS also contributes to the rise in water levels caused by storm surges. Total precipitation (TP) can indicate the intensity of TC rainfall as well as the potential impact of inland floods and water logging. However, the relationship between MWS and TP is complex and nonlinear, and there is a lack of a clear formula to express this relationship. Copula is an effective probability method to model the dependence between two or more variables with uniform cumulative distribution functions (CDFs).[Methods] Therefore, in this study, a bivariate copula function was used to construct the joint probability of MWS and TP. Four marginal distribution models (Gamma, Gumbel, Weibull, and generalized extreme value (GEV)) were first fitted based on 553 MWSs at landfall and TPs over land in China (1951-2015). Three two-dimensional Archimedean copula functions (Clayton, Frank, and Gumbel) were then used to construct the joint probability of MWS and TP. The Kolmogorov-Smirov (K-S) test at a 5% significance level and the ordinary least squares (OLS) values were used to determine the best marginal and copula models. The characteristics of marginal CDFs and joint probability were also discussed. The conditional probability of TP was also calculated and discussed since TC intensity (wind) is easier to achieve than precipitation.[Results] The results of this study are as follows: (1) Weibull and Gamma are the best marginal CDFs for MWS and TP, respectively, and the Gumbel copula is the best copula function. Fitted Gumbel copula PDF values in the upper and lower tail are relatively high, indicating the probability of TCs with MWS and TP simultaneously being strong or weak is higher than TCs with either MWS or TP being severe. (2) The maxima of conditional probability increases with MWS, indicating that the most probable TP is also strong when MWS is strong. (3) Here, TP∈[1000, 2000]×108 m3 is defined as strong TP. When MWS ≤60 m/s, the conditional probability of strong TP increases with MWS; but when MWS >60 m/s, the conditional probability of strong TP increases with MWS before the threshold and decreases with MWS after the threshold. Each TP is associated with an MWS threshold, which increases with the concerned TP.[Conclusions] Our findings show that the construction and analysis of the joint probability distribution between MWS and TP lead to an improved understanding of the interaction relationship between TC hazardous wind and precipitation. This study also contributes to a comprehensive investigation of the TC multihazard destructiveness.
Key wordscopula function    tropical cyclone    compound wind and precipitation    joint probability
收稿日期: 2022-12-15      出版日期: 2023-05-12
基金资助:国家自然科学基金青年科学基金项目(42007420);金华市科技计划项目公益类(2022-4-077)
通讯作者: 栗健,助理研究员,E-mail:jianli@tsinghua.edu.cn     E-mail: jianli@tsinghua.edu.cn
作者简介: 叶妍婷(1990—),女,工程师。
引用本文:   
叶妍婷, 龚俊强, 张海霞, 栗健. 基于二维Archimedean copula函数的热带气旋风雨联合概率分析[J]. 清华大学学报(自然科学版), 2023, 63(6): 874-881.
YE Yanting, GONG Junqiang, ZHANG Haixia, LI Jian. Joint probability analysis of tropical cyclone wind and precipitation with the Archimedean copula function. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 874-881.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.022  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I6/874
  
  
  
  
  
  
  
  
  
  
[1] JORDAN II M R, CLAYSON C A. A new approach to using wind speed for prediction of tropical cyclone generated storm surge[J]. Geophysical Research Letters, 2008, 35(13):L13802.
[2] LIN N, CHAVAS D. On hurricane parametric wind and applications in storm surge modeling[J]. Journal of Geophysical Research, 2012, 117(D9):D09120.
[3] CHAO W T, YOUNG C C. Accurate storm surge prediction with a parametric cyclone and neural network hybrid model[J]. Water, 2022, 14(1):96.
[4] 丁一汇,蔡则怡,李吉顺. 1975年8月上旬河南特大暴雨的研究[J].大气科学, 1978, 2(4):276-289. DING Y H, CAI Z Y, LI J S. A study of the torrential rain in Henan province in early August 1975[J]. Scientia Atmospherica Sinica, 1978, 2(4):276-289.(in Chinese)
[5] 丁一汇.论河南"75·8"特大暴雨的研究:回顾与评述[J].气象学报, 2015, 73(3):411-424. DING Y H. On the study of the unprecedented heavy rainfall in Henan Province during 4-8 August 1975:Review and assessment[J]. Acta Meteorologica Sinica, 2015, 73(3):411-424.(in Chinese)
[6] SKLAR A. Fonctions de répartitionà n dimensions et leurs marges[J]. Publications de l'Institut Statistique de l'Université de Paris, 1959, 8:229-231.
[7] GRIMALDI S, SERINALDI F. Asymmetric copula in multivariate flood frequency analysis[J]. Advances in Water Resources, 2006, 29(8):1155-1167.
[8] SRAJ M, BEZAK N, BRILLY M. Bivariate flood frequency analysis using the copula function:A case study of the Litija station on the Sava River[J]. Hydrological Processes, 2015, 29(2):225-238.
[9] 陈子燊,黄强,刘曾美.基于非对称Archimedean copula的三变量洪水风险评估[J].水科学进展, 2016, 27(5):763-771. CHEN Z S, HUANG Q, LIU Z M. Risk assessment of trivariate flood based on asymmetric Archimedean copulas[J]. Advances in Water Science, 2016, 27(5):763-771.(in Chinese)
[10] RAZMKHAH H, FARAROUIE A, RAVARI A R. Multivariate flood frequency analysis using bivariate copula functions[J]. Water Resources Management, 2022, 36(2):729-743.
[11] HAN C, LIU S G, GUO Y P, et al. Copula-based analysis of flood peak level and duration:Two case studies in Taihu Basin, China[J]. Journal of Hydrologic Engineering, 2018, 23(6):05018009.
[12] SHIAU J T. Fitting drought duration and severity with two-dimensional copulas[J]. Water Resources Management, 2006, 20(5):795-815.
[13] SHIAU J T, FENG S, NADARAJAH S. Assessment of hydrological droughts for the Yellow River, China, using copulas[J]. Hydrological Processes, 2007, 21(16):2157-2163.
[14] SHIAU J T, MODARRES R. Copula-based drought severity-duration-frequency analysis in Iran[J]. Meteorological Applications, 2009, 16(4):481-489.
[15] LI N, LIU X Q, XIE W, et al. The return period analysis of natural disasters with statistical modeling of bivariate joint probability distribution[J]. Risk Analysis, 2013, 33(1):134-145.
[16] 许瀚卿,谭金凯,李梦雅,等.基于copula函数的沿海城市雨潮复合灾害风险研究[J].自然灾害学报, 2022, 31(1):40-48. XU H Q, TAN J K, LI M Y, et al. Compound flood risk of rainfall and storm surge in coastal cities as assessed by copula formal[J]. Journal of Natural Disasters, 2022, 31(1):40-48.(in Chinese)
[17] 甘富万,邵帅杰,黄宇明,等.基于copula函数的铁山港雨潮遭遇组合分析[J].中国农村水利水电, 2022(6):84-89. GAN F W, SHAO S J, HUANG Y M, et al. Combination analysis of rain tide encounter in Tieshan harbour based on copula function[J]. China Rural Water and Hydropower, 2022(6):84-89.(in Chinese)
[18] BUSHRA N, TREPANIER J C, ROHLI R V. Joint probability risk modelling of storm surge and cyclone wind along the coast of Bay of Bengal using a statistical copula[J]. International Journal of Climatology, 2019, 39(11):4206-4217.
[19] 武占科,赵林,葛耀君.上海地区台风条件风速和雨强联合概率分布统计[J].空气动力学学报, 2010, 28(4):393-399. WU Z K, ZHAO L, GE Y J. Statistical analysis of wind velocity and rainfall intensity joint probability distribution of Shanghai area in typhoon condition[J]. Acta Aerodynamica Sinica, 2010, 28(4):393-399.(in Chinese)
[20] UM M J, JOO K, NAM W, et al. A comparative study to determine the optimal copula model for the wind speed and precipitation of typhoons[J]. International Journal of Climatology, 2017, 37(4):2051-2062.
[21] 王修勇,韩湘逸,孙洪鑫,等.琼州海峡跨海大桥桥址处风雨联合概率分布研究[J].公路交通科技, 2016, 33(2):60-66. WANG X Y, HAN X Y, SUN H X, et al. Research of wind velocity and rainfall joint probability distribution at Qiongzhou Strait Bridge site[J]. Journal of Highway and Transportation Research and Development, 2016, 33(2):60-66.(in Chinese)
[22] 陈立华,吕淑婷,黄荣华,等.钦州市台风影响下风雨联合概率分布模型研究[J].广西大学学报(自然科学版), 2019, 44(4):1184-1194. CHEN L H, LYU S T, HUANG R H, et al. Research on the probability distribution model of wind and rain under typhoon influence in Qinzhou city[J]. Journal of Guangxi University (Natural Science Edition), 2019, 44(4):1184-1194.(in Chinese)
[23] 侯静惟,方伟华,程锰,等.基于copula函数的海南热带气旋风雨联合概率特征分析[J].自然灾害学报, 2019, 28(3):54-64. HOU J W, FANG W H, CHENG M, et al. Joint probability analysis of tropical cyclone wind and rainfall for integrated hazard severity assessment in Hainan[J]. Journal of Natural Disasters, 2019, 28(3):54-64.(in Chinese)
[24] 许红师,练继建,宾零陵,等.台风灾害多元致灾因子联合分布研究[J].地理科学, 2018, 38(12):2118-2124. XU H S, LIAN J J, BIN L L, et al. Joint distribution of multiple typhoon hazard factors[J]. Scientia Geographica Sinica, 2018, 38(12):2118-2124.(in Chinese)
[25] YING M, ZHANG W, YU H, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2):287-301.
[26] JOE H. Multivariate models and dependence concepts[M]. New York:Chapman&Hall, 1997.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn