Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (6): 934-940    DOI: 10.16511/j.cnki.qhdxxb.2023.22.023
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
航空消防大飞机灭火任务顶层指标分解分配方法及应用
顾寅, 林凯毅, 项拓宇, 周睿, 申世飞
清华大学 工程物理系, 公共安全研究院, 北京 100084
Top-level metrics decomposition and allocation method for large firefighting aircraft fireGextinguishing missions and its application
GU Yin, LIN Kaiyi, XIANG Tuoyu, ZHOU Rui, SHEN Shifei
Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(2467 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 投放有效利用率、投放均匀度等是评估航空消防大飞机灭火任务系统性能的顶层指标。该文建立了航空消防大飞机灭火任务顶层指标半物理半经验模型,明确了顶层指标与灭火任务系统设计阶段参数(包括水箱平均排放流量、投放液体总量等),以及灭火任务规划阶段参数(包括投放液体黏度、投放液体密度、飞行速度、投放高度等)间的量化关系;以既定投放效能要求为目标,逆向应用顶层指标半物理半经验模型,提出了顶层指标分解分配方法。以某典型固定翼航空消防大飞机为例,进行灭火任务顶层指标分解分配,计算得到了应用于灭火任务系统设计阶段的“水箱舱门面积”取值范围,以及应用于灭火任务规划阶段的“灭火剂黏度”和“投放高度-飞行速度”辅助决策平面。结果表明,所提出的分解分配方法可为已有机型的迭代设计和灭火任务规划提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾寅
林凯毅
项拓宇
周睿
申世飞
关键词 航空消防大飞机灭火任务系统投放有效利用率投放均匀度分解分配方法    
Abstract:[Objective] The top-level metrics for evaluating the performance of an aircraft fire-extinguishing mission system include effective drop utilization rate and uniformity. The former refers to the ratio of the liquid collected on the ground within the effective coverage area to the dropped liquid; this ensures that sufficient liquid falls to the effective coverage area on the ground. The latter refers to the average thickness of ground coverage within the effective coverage area; this ensures that the thickness of liquid coverage falling to the effective coverage area on the ground meets the requirements of the firefighting task. However, physical modeling and the top-level metrics decomposition and allocation for fire-extinguishing mission systems have not yet been documented. The current work aims to address a semiphysical and semiempirical model for the top-level metrics decomposition and allocation of large firefighting aircraft fire-extinguishing missions.[Methods] Based on the ground pattern and fraction models by Legendre et al. and Gu et al., respectively, we establish a semiphysical and semiempirical model for the top-level metrics of aircraft fire-extinguishing missions by coupling logical reasoning and theoretical derivation methods. Further, we clarify the quantitative relationship between the top-level metrics and parameters at the design stage (such as the average flow rate and the total amount of liquid dropped) and the planning stage (such as the viscosity of the released liquid, the density of the released liquid, flight velocity, and flight altitude) of the fire-extinguishing mission system. Moreover, the top-level metric decomposition and allocation method is proposed by reversely applying the semiphysical and semiempirical model with a predetermined liquid release performance requirement as the goal. This enables rapid calculation of the range of relevant parameter values at the design and planning stages of the fire-extinguishing mission system, providing a theoretical basis for the iterative upgrade design of existing aircraft models and mission planning.[Results] To validate the effectiveness of the top-level metrics decomposition and allocation method for aircraft fire-extinguishing missions, this study decomposes and allocates the top-level metrics for a typical fixed-wing large firefighting aircraft fire-extinguishing mission system, obtaining the “hatch area” range for the design stage and the “fire-retardant viscosity” and “flight altitude–flight velocity” decision-making planes for the planning stage of the fire-extinguishing mission.[Conclusions] The results indicate that the proposed decomposition and allocation method can, to some extent, guide the optimization design and fire-extinguishing mission planning of the fixed-wing aircraft fire-extinguishing mission system.
Key wordsfirefighting aircraft    fire-extinguishing mission system    effective drop utilization rate    drop uniformity    decomposition and allocation method
收稿日期: 2022-12-15      出版日期: 2023-05-12
通讯作者: 周睿,副研究员,E-mail:zhour@mail.tsinghua.edu.cn     E-mail: zhour@mail.tsinghua.edu.cn
作者简介: 顾寅(1998—),男,硕士研究生。
引用本文:   
顾寅, 林凯毅, 项拓宇, 周睿, 申世飞. 航空消防大飞机灭火任务顶层指标分解分配方法及应用[J]. 清华大学学报(自然科学版), 2023, 63(6): 934-940.
GU Yin, LIN Kaiyi, XIANG Tuoyu, ZHOU Rui, SHEN Shifei. Top-level metrics decomposition and allocation method for large firefighting aircraft fireGextinguishing missions and its application. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 934-940.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.023  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I6/934
  
  
  
  
  
  
  
[1] ARTÉS T, OOM D, DE RIGO D, et al. A global wildfire dataset for the analysis of fire regimes and fire behaviour[J]. Scientific Data, 2019, 6(1):296.
[2] PAUDEL J. Beyond the blaze:The impact of forest fires on energy poverty[J]. Energy Economics, 2021, 101:105388.
[3] 尚超,王克印.森林航空灭火技术现状及展望[J].林业机械与木工设备, 2013, 41(3):4-8. SHANG C, WANG K Y. Current state and prospect of aerial forest fire fighting technology[J]. Forestry Machinery&Woodworking Equipment, 2013, 41(3):4-8.(in Chinese)
[4] 魏萌.图片新闻[J].航空动力, 2021(5):76. WEI M. Photo news[J]. Aerospace Power, 2021(5):76.(in Chinese)
[5] GEORGE C W. An operational retardant effectiveness study[J]. Fire Management Notes, 1985, 46(2):18-23.
[6] SWANSON D H, LUEDECKE A D, HELVIG T N, et al. Development of user guidelines for selected retardant aircraft. Final report[R]. Hopkins, USA:Honeywell, 1975.
[7] GEORGE C W. An update on the operational retardant effectiveness (ORE) program[C]//The Art and Science of Fire Management. Proceedings of the First Interior West Fire Council Annual Meeting and Workshop. Kananaskis, Canada, 1990:114-122.
[8] GEORGE C W, JOHNSON G M. Developing air tanker performance guidelines:INT-268[R]. Ogden, USA:Intermountain Research Station, USDA Forest Service, 1990.
[9] SOLARZ P, JORDAN C. Ground pattern performance of the Airspray Electra L-188 with Aero Union constant flow tank:Technical Report 0057-2851-MTDC[R]. Missoula, USA:Missoula Technology and Development Center, USDA Forest Service, 2000.
[10] SOLARZ P, JORDAN C. Ground pattern performance of the Aero Union SP-2H:Technical Report 0057-2849-MTDC[R]. Missoula, USA:Missoula Technology and Development Center, USDA Forest Service, 2000.
[11] SOLARZ P, JORDAN C. Ground pattern performance of the Aero Flite DC4 airtanker with modified ARDCO conventional tank:Technical Report 0057-2867-MTDC[R]. Missoula, USA:Missoula Technology and Development Center, USDA Forest Service, 2000.
[12] SOLARZ P, JORDAN C. Ground pattern performance of the Neptune P2V-7 airtanker:Technical Report 0057-2848-MTDC[R]. Missoula, USA:Missoula Technology and Development Center, USDA Forest Service, 2000.
[13] SOLARZ P, JORDAN C. Ground pattern performance of the Snow Air Tractor with constant flow tank:Technical Report 0057-2852-MTDC[R]. Missoula, USA:Missoula Technology and Development Center, USDA Forest Service, 2000.
[14] SOLARZ P, JORDAN C. Ground pattern performance of the LA County Bell S205 helicopter with Sheetcraft fixed tank:Technical Report 0057-2863-MTDC[R]. Missoula, USA:Missoula Technology and Development Center, USDA Forest Service, 2000.
[15] SOLARZ P, JORDAN C. Ground pattern performance of the Columbia BV-107 helicopter using the 1000-gallon Griffith Big Dipper helibucket:Technical Report 0057-2865-MTDC[R]. Missoula, USA:Missoula Technology and Development Center, USDA Forest Service, 2000.
[16] SOLARZ P, JORDAN C. Ground pattern performance of the Siller Brothers S-61N helicopter using the 1000-gallon Griffith big dipper helibucket:Technical Report 0057-2864-MTDC[R]. Missoula, USA:Missoula Technology and Development Center, USDA Forest Service, 2000.
[17] SUTER A. Drop testing airtankers:A discussion of the cup-and-grid method:Technical Report 0057-2868-MTDC[R]. Missoula, USA:Missoula Technology and Development Center, USDA Forest Service, 2000.
[18] SUTER A. Estimating methods, variability, and sampling for drop-test data:Technical Report 0257-2826-MTDC[R]. Missoula, USA:Missoula Technology and Development Center, USDA Forest Service, 2002.
[19] 彭冉,王晨昱.灭火飞机投放试验地面附着密度测量方法研究[J].计量学报, 2020, 41(12):1510-1515. PENG R, WANG C Y. Study on measurement method of ground adhesion density of fire extinguishing aircraft launching test[J]. Acta Metrologica Sinica, 2020, 41(12):1510-1515.(in Chinese)
[20] 蔡志勇,石含玥,赵红军,等.水陆两栖飞机灭火飞行仿真系统构建与仿真[J/OL].(2022-04-25)[2022-12-06].航空学报. https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2022.27036. CAI Z Y, SHI H Y, ZHAO H J, et al. Construction and simulation of amphibious aircraft fire-fighting flight simulation system[J/OL].(2022-04-25)[2022-12-06]. Acta Aeronautica et Astronautica Sinica, 2022. https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2022.27036.(in Chinese)
[21] GU Y, ZHOU R, XIE H, et al. Study on the ground fraction of air tankers[J/OL].(2023-01-19)[2022-12-06]. International Journal of Wildland Fire, 2023. DOI:10.1071/WF22055.
[22] LEGENDRE D, BECKER R, ALMÉRAS E, et al. Air tanker drop patterns[J]. International Journal of Wildland Fire, 2014, 23(2):272-280.
[23] RIMBERT N, SÉRO-GUILLAUME O. Log-stable laws as asymptotic solutions to a fragmentation equation:Application to the distribution of droplets in a high Weber-number spray[J]. Physical Review E, 2004, 69(5):056316.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn