Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (9): 1339-1349    DOI: 10.16511/j.cnki.qhdxxb.2023.22.030
  大数据 本期目录 | 过刊浏览 | 高级检索 |
异质图神经网络协同过滤模型
杨波1,2,3, 邱雷3, 吴书4
1. 北京林业大学 信息学院, 北京 100083;
2. 国家林业和草原局 林业智能信息处理工程技术研究中心, 北京 100083;
3. 北方工业大学 信息学院, 北京 100144;
4. 中国科学院 自动化研究所, 北京 100190
A collaborative filtering model based on heterogeneous graph neural network
YANG Bo1,2,3, QIU Lei3, WU Shu4
1. College of Information, Beijing Forestry University, Beijing 100083, China;
2. Forestry Intelligent Information Processing Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing 100083, China;
3. College of Information, North China University of Technology, Beijing 100144, China;
4. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
全文: PDF(2455 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 协同过滤算法被广泛运用于各类大数据的推荐系统中, 能够向用户推荐与该用户类似的用户感兴趣的信息。 随着深度学习, 尤其是图神经网络的发展, 基于图神经网络的协同过滤算法受到了越来越多的关注。 基于图结构的协同过滤模型通常将用户与条目的交互信息建模为二部图, 然后利用二部图的高阶连通性建模捕获用户与条目之间的隐藏关系。 但是, 这种二部图模型没有将用户之间的相似关系和条目之间的相似关系明确建模。 此外, 二部图的稀疏性会产生图中高阶连通性依赖问题。 为此, 该文提出了一种基于异质图卷积神经网络的协同过滤模型, 将用户之间的相似度和条目之间的相似度显式地编码到图结构中, 使得用户与条目的交互关系被建模成异质图。 异质图结构使用户之间的相似度与条目之间的相似度能被直接捕获, 降低了对高阶连通性的依赖, 同时缓解了二部图过于稀疏的问题。 该文在4个典型的数据集上进行了实验, 并与4种经典模型进行了对比, 结果表明所提出的模型效果较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨波
邱雷
吴书
关键词 图卷积神经网络协同过滤推荐系统二部图异质图    
Abstract:[Objective] Collaborative filtering algorithms are widely used in various recommendation systems and can be used to recommend information of interest to users similar to the user based on historical data. Recently, collaborative filtering algorithms based on graph neural networks have become one of the hot research topics. A collaborative filtering model based on a graph structure usually encodes the interaction between users and information items as a two-part diagram, and high-order connectivity modeling of the bipartite graph can be used to capture the hidden relationship between the user and the item. However, this bipartite graph model does not explicitly obtain the similarity relationship between users and between items. Additionally, the bipartite graph sparsity causes high-order connectivity dependence problems in the model. [Methods] Herein, a collaborative filtering model is proposed based on a heterogeneous graph convolutional neural network that explicitly encodes the similarities between users and that between items into the graph structure so that the interaction relationships between users and between items are modeled as a heterogeneous graph. The heterogeneous graph structure allows the similarities between users and between items to be directly captured, reducing the need for high-order connectivity and alleviating the bipartite graph sparsity problem. [Results] We conducted experiments on four typical datasets and compared the results using four typical methods. The results showed that our model achieved better experimental results than the traditional collaborative filtering models and existing graph neural network models. Moreover, based on the different types of edges, different similarity methods, and different similarity thresholds, our model obtained better experimental results. [Conclusions] Our model explicitly encodes the similarities between users and between items into the heterogeneous graph structure as edges so that the model can directly learn these similarities during training to get the embedded information of users and items. The proposed model alleviates the sparsity and high-order connectivity modeling problems of bipartite graphs. The collaborative filtering model based on heterogeneous graph neural networks can also fully capture the interaction relationships between users and items through low-order connectivity in the graph.
Key wordsgraph convolutional neural network    collaborative filtering    recommendation system    bipartite graph    heterogeneous graph
收稿日期: 2023-03-11      出版日期: 2023-08-19
基金资助:中央高校基本科研业务费项目(BLX202003)
作者简介: 杨波(1981-),男,副教授。E-mail:yangbo@bjfu.edu.cn
引用本文:   
杨波, 邱雷, 吴书. 异质图神经网络协同过滤模型[J]. 清华大学学报(自然科学版), 2023, 63(9): 1339-1349.
YANG Bo, QIU Lei, WU Shu. A collaborative filtering model based on heterogeneous graph neural network. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1339-1349.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.030  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I9/1339
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] KIPF T N, WELLING M. Semi-s upervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations. Toulon, France: OpenReview.net, 2017.
[2] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[3] HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Perth, Australia: International World Wide Web Conferences Steering Committee, 2017: 173-182.
[4] WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris, France: Association for Computing Machinery, 2019: 165-174.
[5] QASEM S N, MOHAMMADZADEH A. A deep learned type-2 fuzzy neural network: Singular value decomposition approach[J]. Applied Soft Computing, 2021, 105: 107244.
[6] NGUYEN J, ZHU M. Content-boosted matrix factorization techniques for recommender systems[J]. Statistical Analysis and Data Mining, 2013, 6(4): 286-301.
[7] WU L, SUN P J, HONG R C, et al. SocialGCN: An efficient graph convolutional network based model for social recommendation[Z/OL]. arXiv: 1811.02815, 2018.
[8] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: Online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: Association for Computing Machinery, 2014: 701-710.
[9] YANG Y, CHEN H R, SHAO J M. Triplet enhanced autoencoder: Model-free discriminative network embedding[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China: IJCAI.org, 2019: 5363-5369.
[10] LI S W, CHEN R Y, SUN C P, et al. Region-aware neural graph collaborative filtering for personalized recommendation[J]. International Journal of Digital Earth, 2022, 15(1): 1446-1462.
[11] XIA J F, LI D S, GU H S, et al. Incremental graph convolutional network for collaborative filtering[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Queensland, Australia: Association for Computing Machinery, 2021: 2170-2179.
[12] SHAH S M A, GE H W, HAIDER S A, et al. A quantum spatial graph convolutional network for text classification[J]. Computer Systems Science and Engineering, 2021, 36(2): 369-382.
[13] VAN DEN BERG R, KIPF T N, WELLING M. Graph convolutional matrix completion[Z/OL]. arXiv: 1706.02263, 2017.
[14] YANG J H, CHEN C M, WANG C J, et al. HOP-rec: High-order proximity for implicit recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems. Vancouver, Canada: Association for Computing Machinery, 2018: 140-144.
[15] LI Q M, HAN Z C, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans, USA: AAAI, 2018: 3538-3545.
[16] ZHAO J A, WANG X, SHI C, et al. Heterogeneous graph structure learning for graph neural networks[C/OL]//Proceedings of the 35th AAAI Conference on Artificial Intelligence. Held Virtually: AAAI, 2021: 4697-4705.
[17] YANG T C, HU L M, SHI C, et al. HGAT: Heterogeneous graph attention networks for semi-supervised short text classification[J]. ACM Transactions on Information Systems, 2021, 39(3): 32.
[18] XU R X, LIU T Y, LI L, et al. Document-level event extraction via heterogeneous graph-based interaction model with a tracker[C/OL]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Held Virtually: Association for Computational Linguistics, 2021: 3533-3546.
[19] YAO L, MAO C S, LUO Y. Graph convolutional networks for text classification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Honolulu, USA: AAAI, 2019: 7370-7377.
[20] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of the 30th International Conference on Machine Learning. Atlanta, USA: International Machine Learning Society, 2013: 3.
[1] 贾凡, 康舒雅, 江为强, 王光涛. 基于相似性的多用户漏洞推荐算法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1399-1407.
[2] 刘树栋, 张嘉妮, 陈旭. 评论感知的异构变分自编码器推荐模型[J]. 清华大学学报(自然科学版), 2022, 62(1): 88-97.
[3] 刘卫东, 刘亚宁. 推荐系统中的带辅助信息的变分自编码器[J]. 清华大学学报(自然科学版), 2018, 58(8): 698-702.
[4] 张敏, 丁弼原, 马为之, 谭云志, 刘奕群, 马少平. 基于深度学习加强的混合推荐方法[J]. 清华大学学报(自然科学版), 2017, 57(10): 1014-1021.
[5] 朱强, 孙玉强. 一种基于信任度的协同过滤推荐方法[J]. 清华大学学报(自然科学版), 2014, 54(3): 360-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn