Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (10): 1558-1565    DOI: 10.16511/j.cnki.qhdxxb.2023.22.031
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
抽水蓄能电站应急排水多目标优化方法及算例分析
代鑫1,2, 陈举师1, 陈涛1,2, 黄弘2, 李志鹏1, 余水平1
1. 北京辰安科技股份有限公司, 北京 100080;
2. 清华大学 工程物理系, 北京 100084
Multi-objective optimization method and case analysis for emergency drainage of pumped storage power station
DAI Xin1,2, CHEN Jushi1, CHEN Tao1,2, HUANG Hong2, LI Zhipeng1, YU Shuiping1
1. Beijing Global Safety Technology Co., Ltd., Beijing 100080, China;
2. Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(4027 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 随着抽水蓄能电站布局范围和建设规模的扩大,地下厂房水患威胁日益严重。针对水淹厂房事故场景下无法快速有效排水的问题,该文提出了一种抽水蓄能电站应急排水多目标优化方法。结合电站工程特点,建立了分阶段串并联综合应急排水方法。以最小化排水时间和装备运行成本为目标建立多目标优化模型,采用非支配排序遗传算法Ⅱ(NSGA-Ⅱ)对各阶段排水流量求取最优解。以某抽水蓄能电站为例开展研究,得到了有凸的Pareto最优前沿,应急排水时间最短约为52 h,装备运行成本最少约为138万元,同时给出了最优解对应的各阶段排水流量。结果表明,该方法能够合理推荐抽水蓄能电站应急排水方案,提高电站水淹厂房事故的应急处置水平。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代鑫
陈举师
陈涛
黄弘
李志鹏
余水平
关键词 抽水蓄能电站水淹厂房应急排水多目标优化非支配排序遗传算法Ⅱ(NSGA-Ⅱ)    
Abstract:[Objective] The severity of flood disasters in underground powerhouses is increasing with the expansion of pumped storage power stations, and the current emergency drainage system of pumped storage power stations cannot meet the large discharge and high-lift demands during periods of abnormal water inflow. This paper proposes a phased parallel emergency drainage method for pumped storage power stations to address the problem of ineffective and slow drainage during underground facility floods. Furthermore, a multi-objective optimization model for emergency drainage is established to solve critical parameters in the drainage plan. [Methods] This paper proposes a multi-objective optimization method for emergency drainage in pumped storage power stations. First, based on the engineering characteristics of the underground powerhouses of pumped storage power stations, the emergency drainage process is divided into three stages: early, middle, and late. Second, emergency drainage methods are developed for each stage. During the early stage of drainage, for a small amount of accumulated water in the area above the top floor of the generator, submersible pumps and drainage pipelines are installed in the entrance tunnel to discharge the water to the exit of the tunnel. The middle stage of drainage focuses on draining the accumulated water from the generator floor; multiple drainage vehicles are connected in series to drain the water to the surface. Late-stage drainage is aimed at the accumulated water below the generator floor. A small volume floating pump is used to extract water from each layer, which is then drained to the generator floor. Here, a water storage tank is set up to temporarily store the water extracted by the floating pump; the water is drained in parallel through the entrance tunnel and the maintenance and leakage drainage pipes. Finally, the proposed drainage method is mathematically modeled to minimize drainage time and operating costs as objectives. Furthermore, the non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ) is employed to obtain the optimal solution for the drainage flow rate at each stage. [Results] The phased series-parallel comprehensive emergency drainage method proposed in this paper employs movable drainage equipment, enabling rapid deployment by onsite emergency rescue teams. In the case of a pumped storage power station, 34 drainage schemes are optimized, all of which meet the constraint conditions. Among them, the shortest emergency drainage time is about 52 h, and the minimum operating cost for drainage equipment is approximately 1.38 million RMB, providing a basis for selecting drainage schemes and procuring or customizing drainage equipment. [Conclusions] The optimal solution set of drainage flow rates corresponding to each drainage stage can be obtained by updating only the self-attribute data of the power station in the model input using the NSGA-Ⅱ-based multi-objective optimization model for emergency drainage of pumped storage power stations. This method reduces emergency drainage time and equipment operating costs while improving the emergency response level of flood accidents in pumped storage power stations.
Key wordspumped storage power station    flooded powerhouse    emergency drainage    multi-objective optimization    non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)
收稿日期: 2023-01-09      出版日期: 2023-09-01
通讯作者: 陈举师,工程师,E-mail:chenjushi@gsafety.com     E-mail: chenjushi@gsafety.com
作者简介: 代鑫(1999-),女,硕士研究生。
引用本文:   
代鑫, 陈举师, 陈涛, 黄弘, 李志鹏, 余水平. 抽水蓄能电站应急排水多目标优化方法及算例分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1558-1565.
DAI Xin, CHEN Jushi, CHEN Tao, HUANG Hong, LI Zhipeng, YU Shuiping. Multi-objective optimization method and case analysis for emergency drainage of pumped storage power station. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1558-1565.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.031  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I10/1558
  
  
  
  
  
  
  
[1] 逄立辉,于生波,房恩泽,等.抽水蓄能电站地下厂房洞室系统排水设计浅析[J].水电与抽水蓄能, 2020, 6(6):83-85. PANG L H, YU S B, FANG E Z, et al. Drainage design of underground powerhouse cavern system of pumped storage power station[J]. Hydropower and Pumped Storage, 2020, 6(6):83-85.(in Chinese)
[2] 杨彩玲.地铁区间隧道应急排水设置研究[J].都市快轨交通, 2021, 34(4):128-131, 137. YANG C L. Emergency drainage of metro tunnels[J]. Urban Rapid Rail Transit, 2021, 34(4):128-131, 137.(in Chinese)
[3] 王西敏.煤矿井下应急排水车的研究[J].机械管理开发, 2019, 34(4):32-33, 36. WANG X M. Research and application of underground emergency drainage vehicle in coal mine[J]. Mechanical Management and Development, 2019, 34(4):32-33, 36.(in Chinese)
[4] 宫学东,陈威,朱亚坤.煤矿强排自动控制系统设计[J].工矿自动化, 2017, 43(5):75-78. GONG X D, CHEN W, ZHU Y K. Design of automatic control system of forced drainage of coal mine[J]. Industry and Mine Automation, 2017, 43(5):75-78.(in Chinese)
[5] 邢启风.立井水害抢险排水的问题及解决方案[J].矿山机械, 2015, 43(9):141-142. XING Q F. Problems and solutions of emergency drainage for upright well flooding[J]. Mining&Mining Machinery, 2015, 43(9):141-142.(in Chinese)
[6] 李栋.潜水泵接力排水技术在矿井抢险排水实践中的应用[J].机械管理开发, 2017, 32(10):62-63, 111. LI D. Application of relay drainage technique of submersible pump in emergency drainage of coal mine[J]. Mechanical Management and Development, 2017, 32(10):62-63, 111.(in Chinese)
[7] 佟德利,潘菊芳,谢永兰,等.高扬程、大流量抽水泵技术现状及发展前景[J].水电与抽水蓄能, 2017, 3(4):32-37. TONG D L, PAN J F, XIE Y L, et al. Technology status and development prospects of high-lift and high flow pumps[J]. Hydropower and Pumped Storage, 2017, 3(4):32-37.(in Chinese)
[8] 马永杰,云文霞.遗传算法研究进展[J].计算机应用研究, 2012, 29(4):1201-1206, 1210. MA Y J, YUN W X. Research progress of genetic algorithm[J]. Application Research of Computers, 2012, 29(4):1201-1206, 1210.(in Chinese)
[9] 王一杰,王发信,王振龙,等.基于NSGA-Ⅲ的水资源多目标优化配置研究:以安徽省泗县为例[J].人民长江, 2021, 52(5):73-77, 85. WANG Y J, WANG F X, WANG Z L, et al. Multi-objective optimal allocation of water resources based on NSGA-Ⅲ algorithm in Sixian County, Anhui Province[J]. Yangtze River, 2021, 52(5):73-77, 85.(in Chinese)
[10] WANG D S, TAN D P, LIU L. Particle swarm optimization algorithm:An overview[J]. Soft Computing, 2018, 22(2):387-408.
[11] DONG J, DOU Z H, SI S Q, et al. Optimization of capacity configuration of wind-solar-diesel-storage using improved sparrow search algorithm[J]. Journal of Electrical Engineering&Technology, 2022, 17(1):1-14.
[12] LI Y B, HUANG W X, WU R, et al. An improved artificial bee colony algorithm for solving multi-objective low-carbon flexible job shop scheduling problem[J]. Applied Soft Computing, 2020, 95:106544.
[13] DENG W, ZHANG X X, ZHOU Y Q, et al. An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems[J]. Information Science, 2022, 585:441-453.
[14] VERMA S, PANT M, SNASEL V. A comprehensive review on NSGA-Ⅱ for multi-objective combinatorial optimization problems[J]. IEEE Access, 2021, 9:57757-57791.
[15] 吴云,曾超,杨侃,等.基于改进NSGA-Ⅱ算法的水资源多目标优化配置[J].人民黄河, 2020, 42(5):71-75. WU Y, ZENG C, YANG K, et al. Multi-objective optimal allocation of water resources based on improved NSGA-Ⅱ algorithm[J]. Yellow River, 2019, 42(5):71-75.(in Chinese)
[16] 张志刚,马光文.基于NSGA-Ⅱ算法的多目标水火电站群优化调度模型研究[J].水力发电学报, 2010, 29(1):213-218. ZHANG Z G, MA G W. Study on optimal scheduling model of NSGA-Ⅱ alogorithm for system of hydro and thermal power plants[J]. Journal of Hydroelectric Engineering, 2010, 29(1):213-218.(in Chinese)
[17] 顾清华,莫明慧,卢才武,等.求解约束高维多目标问题的分解约束支配NSGA-Ⅱ优化算法[J].控制与决策, 2020, 35(10):2466-2474. GU Q H, MO M H, LU C W, et al. Decomposition-based constrained dominance principle NSGA-Ⅱ for constrained many-objective optimization problems[J]. Control and Decision, 2020, 35(10):2466-2474.(in Chinese)
[1] 张潇月, 李玥, 王晨杨, 陈正侠, 贾海峰. 面向不同需求的未来社区海绵源头设施布局方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1483-1492.
[2] 檀添, 陈凯楠, 林秋琼, 蒋烨, 赵争鸣. 多接收端无线电能传输系统动态特性分析及多目标参数优化[J]. 清华大学学报(自然科学版), 2021, 61(10): 1066-1078.
[3] 黄伟, 杨开林, 郭新蕾, 马吉明, 李甲振. 抽水蓄能电站极端甩负荷工况球阀协同调节[J]. 清华大学学报(自然科学版), 2019, 59(8): 635-644.
[4] 桂良进, 朱升发, 陈伟博, 周驰, 范子杰. 波形套的轴向受压分析与优化设计[J]. 清华大学学报(自然科学版), 2019, 59(3): 219-227.
[5] 薛春辉, 董玉杰. 自然循环熔盐球床堆中间换热器的优化设计[J]. 清华大学学报(自然科学版), 2018, 58(5): 445-449.
[6] 孙智源, 陆化普. 考虑交通大数据的交通检测器优化布置模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 743-750.
[7] 张书玮, 罗禹贡, 李克强. 动态交通环境下的纯电动车辆多目标出行规划[J]. 清华大学学报(自然科学版), 2016, 56(2): 130-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn