Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (10): 1548-1557    DOI: 10.16511/j.cnki.qhdxxb.2023.22.044
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
基于暖体假人的消防员降温背心热传递及降温性能分析
操凯1,2, 李亚运2, 付明2, 郭贤2, 刘小勇2, 宋舆涵2,3
1. 安徽建筑大学 机械与电气工程学院, 合肥 230601;
2. 清华大学 合肥公共安全研究院, 灾害环境人员安全安徽省重点实验室, 合肥 230601;
3. 中国科学技术大学 火灾科学国家重点实验室, 合肥 230026
Assessment of the heat transfer characteristics and cooling performance of firefighter cooling vests using thermal manikins
CAO Kai1,2, LI Yayun2, FU Ming2, GUO Xian2, LIU Xiaoyong2, SONG Yuhan2,3
1. School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China;
2. Anhui Province Key Laboratory of Human Safety, Hefei Institute for Public Safety Research, Tsinghua University, Hefei 230601, China;
3. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
全文: PDF(9226 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为降低消防员热应激水平,该文开展降温背心综合性能评价,研究降温背心传热规律以及高温辐射环境、不同劳动强度对降温背心性能的影响。通过环境舱和暖体假人系统评估3个型号的消防员降温背心的降温性能,分别在不同温度(35、40和45℃)、不同定向热辐射(1.5和2.5 kW/m2)和不同劳动强度(低、中等和高)下开展实验。实验结果表明:降温背心可以有效降低消防服内部微环境温度,在200 min后消防服内外层温差仍有6.6℃,辐射直射部位中降温背心对腹部冷却作用最明显;3个型号的降温背心均有不同程度的降温效果,其中降温背心1的降温性能最佳,散热降温功率为4.097 W,散热降温时间超过2 h,降温背心3的降温性能相对最差,散热降温功率为0.753 W,散热降温时间为90 min;随着劳动强度的增大,降温背心的冷却效果下降,其中假人腹部在劳动强度65、110和165 W/m2时温度变化曲线线性拟合直线斜率分别为0.106 8、0.273 4和0.508 6;降温背心的降温性能随环境温度升高而衰减,在环境温度45℃时,假人胸部、肩部、腹部和背部的温度上升梯度与35℃时相比分别增大50.0%、40.6%、60.0%和50.0%;定向热辐射对降温背心的降温性能影响明显,2.5 kW/m2时假人胸部位置仅7 min温度就达到35.69℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
操凯
李亚运
付明
郭贤
刘小勇
宋舆涵
关键词 高温热辐射暖体假人消防员降温背心传热降温性能    
Abstract:[Objective] Firefighting suits worn by firefighters in high-temperature radiation environments, coupled with moderate physical exertion, can lead to body heat accumulation and increased microenvironment temperature inside the suits, which triggers adverse physiological reactions due to severe heat stress, resulting in decreased work efficiency, heat cramps, and other harms. Hence, cooling vests are widely used by firefighters to effectively alleviate heat stress in firefighting scenarios. However, most contemporary cooling vests encounter issues such as severe cold stress, short cooling duration, and poor comfort. Therefore, it is necessary to conduct research on the cooling performance of these vests. [Methods] The cooling effectiveness of three types of firefighter cooling vests was assessed using a thermal manikin system in an environmental chamber under the following conditions: temperatures of 35 ℃, 40 ℃, and 45 ℃ and directed thermal radiation of 1.5 and 2.5 kW/m2, with low, moderate, and high levels of physical exertion. D1922L temperature sensors were deployed on the thermal manikin system to measure the temperatures of the outer, insulation, comfort, and inner layers of the cooling vest as well as the temperatures of the inner and outer layers of the firefighting suit. [Results] The experiments reveal that the cooling vests effectively reduce the microenvironmental temperature inside the firefighting suit, with a temperature difference of 6.6 ℃ between the inner and outer layers of the firefighting suit after 200 min of exposure. The cooling effect is most pronounced in the abdominal area with direct radiation. Among the three types of cooling vests assessed, Cooling Vest 1 exhibits the best performance, achieving a cooling power of 4.097 W and a cooling duration exceeding 2 h. Meanwhile, Cooling Vest 3 has a relatively poor cooling performance, with a cooling power of 0.753 W and a cooling duration of 90 min. As the physical exertion levels increase, the cooling effect of the vests is less pronounced. The linear fitting slopes of the temperature variation curves for the manikin's abdominal areas at 65, 110, and 165 W/m2 are 0.106 8, 0.273 4, and 0.508 6, respectively. Furthermore, the cooling performance of the vests diminishes with increasing environmental temperatures. At an environmental temperature of 45 ℃, the temperature gradients in the manikin's chest, shoulders, abdomen, and back areas increase by 50.0%, 40.6%, 60.0%, and 50.0%, respectively. Moreover, the directed thermal radiation has a significant impact on the cooling performance of the vests. The temperature of the manikin's chest area reaches 35.69 ℃ within only 7 min with a directed thermal radiation of 2.5 kW/m2. [Conclusions] These research findings are anticipated to serve as the preliminary data to enable the determination of rational work durations and intensity. In real fire rescue scenarios, the distribution of phase change materials for heat storage over the chest area and the duration of high-intensity work should be carefully considered. Additionally, these findings provide technical support for the development, testing, and evaluation of personal thermal protective equipment.
Key wordshigh-temperature thermal radiation    thermal manikin    firefighter cooling vest    heat transfer    cooling performance
收稿日期: 2023-05-22      出版日期: 2023-09-01
基金资助:国家重点研发计划(2022YFC3006103);安徽省重点研发计划标准化专项(202104h04020012)
通讯作者: 李亚运,工程师,E-mail:liyayun@tsinghua-hf.edu.cn     E-mail: liyayun@tsinghua-hf.edu.cn
作者简介: 操凯(1998-),男,硕士研究生。
引用本文:   
操凯, 李亚运, 付明, 郭贤, 刘小勇, 宋舆涵. 基于暖体假人的消防员降温背心热传递及降温性能分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1548-1557.
CAO Kai, LI Yayun, FU Ming, GUO Xian, LIU Xiaoyong, SONG Yuhan. Assessment of the heat transfer characteristics and cooling performance of firefighter cooling vests using thermal manikins. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1548-1557.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.044  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I10/1548
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 姜华.略谈灭火救援消防员伤亡原因及预防策略[J].消防界, 2017(4):35. JIANG H. A brief discussion on casualty causes and prevention strategies for fire rescue firefighters[J]. Fire Protection Circle, 2017(4):35.(in Chinese)
[2] 姚磊,田亮,张晓颖.灭火救援现场消防员高温作业研究[J].消防科学与技术, 2012, 31(5):510-512. YAO L, TIAN L, ZHANG X Y. Study on high-temperature operation of firefighters in firefighting and rescue[J]. Fire Science and Technology, 2012, 31(5):510-512.(in Chinese)
[3] 公安部消防局.消防灭火救援[M].北京:中国人民公安大学出版社, 2002. Fire Department of the Ministry of Public Security. Fire fighting and rescue[M]. Beijing:China People's Public Security University Press, 2002.(in Chinese)
[4] HAMDAN H, GHADDAR N, OUAHRANI D, et al. PCM cooling vest for improving thermal comfort in hot environment[J]. International Journal of Thermal Sciences, 2016, 102:154-167.
[5] KANG Z X, UDAYRAJ, WAN X F, et al. A new hybrid personal cooling system (HPCS) incorporating insulation pads for thermal comfort management:Experimental validation and parametric study[J]. Building and Environment, 2018, 145:276-289.
[6] GAO C S, KUKLANE K, HOLMÉR I. Cooling vests with phase change materials:The effects of melting temperature on heat strain alleviation in an extremely hot environment[J]. European Journal of Applied Physiology, 2011, 111(6):1207-1216.
[7] 张传坤.防毒衣用无源微气候调节系统的降温效能研究[D].北京:军事科学院, 2021. ZHANG C K. Study on cooling effect of passive microclimate cooling system for impermeable chemical protective clothing[D]. Beijing:Academy of Military Sciences, 2021.(in Chinese)
[8] 陈莹,宋泽涛,郑晓慧,等.蒸发型降温服的降温性能研究[J].纺织学报, 2022, 43(11):141-147. CHEN Y, SONG Z T, ZHENG X H, et al. Study on cooling performance of evaporative cooling garment[J]. Journal of Textile Research, 2022, 43(11):141-147.(in Chinese)
[9] 张寅平,王馨,朱颖心,等.医用降温服热性能与应用效果研究[J].暖通空调, 2003, 33(S1):58-61. ZHANG Y P, WANG X, ZHU Y X, et al. Special vest as heat sinking for medical garment:Thermal performance and effect of adjusting thermal comfort sense[J]. Journal of HV&AC, 2003, 33(S1):58-61.(in Chinese)
[10] COCA A, DILEO T, KIM J H, et al. Baseline evaluation with a sweating thermal manikin of personal protective ensembles recommended for use in West Africa[J]. Disaster Medicine and Public Health Preparedness, 2015, 9(5):536-542.
[11] ZHENG Q, KE Y, WANG H F. Design and evaluation of cooling workwear for miners in hot underground mines using PCMs with different temperatures[J]. International Journal of Occupational Safety and Ergonomics, 2022, 28(1):118-128.
[12] 兰明强,李亚运,王祥,等.冷环境下基于暖体假人的帐篷内部热舒适性研究[J].中国安全科学学报, 2023, 33(3):220-227. LAN M Q, LI Y Y, WANG X, et al. Thermal comfort study on tent interior based on thermal manikin in cold environment[J]. China Safety Science Journal, 2023, 33(3):220-227.(in Chinese)
[13] 中华人民共和国公安部.消防员灭火防护服:GA 10-2014[S].北京:中国标准出版社, 2014. The Ministry of Public Security of the People's Republic of China. Firemans protective clothing for firefighting:GA 10-2014[S]. Beijing:Standards Press of China, 2014.(in Chinese)
[14] ZHAO M M, GAO C S, WANG F M, et al. The torso cooling of vests incorporated with phase change materials:A sweat evaporation perspective[J]. Textile Research Journal, 2013, 83(4):418-425.
[15] 翁文国,付明,杨杰.高温环境的人体热反应机理与安全评估[M].北京:科学出版社, 2017. WENG W G, FU M, YANG J. Mechanism and safety assessment of human thermal response in high temperature environment[M]. Beijing:Science Press, 2017.(in Chinese)
[16] International Organization for Standardization. Ergonomics of the thermal environment:Determination of metabolic rate:ISO 8996-2021[S]. Geneva:International Organization for Standardization, 2021.
[17] American Society for Testing and Materials. Standard test method for measuring the heat removal rate of personal cooling systems using a sweating heated manikin:ASTM F2371-10[S]. West Conshohocken:American Society for Testing and Materials, 2010.
[18] 黄建华,张慧.人与热环境[M].北京:科学出版社, 2011. HUANG J H, ZHANG H. Human and thermal environment[M]. Beijing:Science Press, 2011.(in Chinese)
[19] REN C G, ZHANG C J. Investigation on performance of three personal cooling systems in mitigating heat strain by means of thermal manikin[J]. Thermal Science, 2017, 21(4):1789-1795.
[20] SONG W F, WANG F M. The hybrid personal cooling system (PCS) could effectively reduce the heat strain while exercising in a hot and moderate humid environment[J]. Ergonomics, 2016, 59(8):1009-1018.
[21] CHAUDHURI T, ZHAI D Q, SOH Y C, et al. Thermal comfort prediction using normalized skin temperature in a uniform built environment[J]. Energy and Buildings, 2018, 159:426-440.
[22] 朱颖心.建筑环境学[M]. 4版.北京:中国建筑工业出版社, 2016. ZHU Y X. Building environment[M]. 4th ed. Beijing:China Building Industry Press, 2016.(in Chinese)
[23] ZHANG S, ZHU N, LV S L. Human response and productivity in hot environments with directed thermal radiation[J]. Building and Environment, 2021, 187:107408.
[24] 陈飞宇,申梁昌,付明,等.面向人体热反应计算的加热服装热湿传递模型[J].清华大学学报(自然科学版), 2023, 63(6):900-909. CHEN F Y, SHEN L C, FU M, et al. Heat and moisture transfer model of heated clothing for human thermal response calculation[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(6):900-909.(in Chinese)
[25] 付明,翁文国,袁宏永.低热辐射强度下防护服热防护性能的实验研究[J].清华大学学报(自然科学版), 2014, 54(6):719-723. FU M, WENG W G, YUAN H Y. Bench scale test of the thermal protective performance of protective clothing for low intensity thermal radiation[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(6):719-723.(in Chinese)
[1] 胡钰文, 闫晓, 宫厚军, 王艳林, 周磊. 耦合传热并联矩形通道流动不稳定性数值研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1257-1263.
[2] 刘倩, 桂南, 杨星团, 屠基元, 姜胜耀. 竖直通道内饱和蒸汽凝结换热数值模拟[J]. 清华大学学报(自然科学版), 2023, 63(8): 1273-1281.
[3] 李大玉, 赵坤, 周魁斌, 孙鹏辉, 武金模. 背板对聚甲基丙烯酸甲酯向下火蔓延的影响[J]. 清华大学学报(自然科学版), 2023, 63(5): 783-791.
[4] 刘梓标, 林俊江, 李和鑫, 黄天娇, 徐文彬, 庄依杰. 考虑电池产热的多孔介质复合相变材料的传热性能[J]. 清华大学学报(自然科学版), 2022, 62(6): 1037-1043.
[5] 温荣福, 杜宾港, 杨思艳, 刘渊博, 李启迅, 程雅琦, 兰忠, 马学虎. 蒸气冷凝传热强化研究进展[J]. 清华大学学报(自然科学版), 2021, 61(12): 1353-1370.
[6] 顾君苹, 刘琦, 吴玉新, 王庆功, 吕俊复. 过冷盐溶液流动沸腾传热预测关联式[J]. 清华大学学报(自然科学版), 2021, 61(12): 1397-1404.
[7] 吴锦超, 仇诗涵, 李沐恒, 韦兴, 陈秉耀, 应葵. 基于Kalman滤波和生物传热模型的实时磁共振温度成像精度提升[J]. 清华大学学报(自然科学版), 2020, 60(4): 334-340.
[8] 沈志杰, 闵敬春, 段江菲. 入口空气参数分布对薄膜式全热交换器性能影响的数值研究[J]. 清华大学学报(自然科学版), 2020, 60(11): 958-966.
[9] 王振川, 胥蕊娜, 熊超, 姜培学. 超临界压力CO2竖直管内传热恶化抑制实验[J]. 清华大学学报(自然科学版), 2018, 58(12): 1101-1106.
[10] 肖红, 曹志伟, 冯英杰, 杨志义, 朱建敏. 基于MELCOR程序的AP1000核电厂安全壳瞬态事故分析[J]. 清华大学学报(自然科学版), 2018, 58(11): 1029-1036.
[11] 马喜振, 贾海军, 刘洋. 竖直管道内强迫循环下非凝性气体对蒸汽冷凝的影响[J]. 清华大学学报(自然科学版), 2017, 57(5): 530-536.
[12] 付明, 翁文国, 韩雪峰. 高温下防护服热阻和湿阻的暖体假人实验[J]. 清华大学学报(自然科学版), 2017, 57(3): 281-285,292.
[13] 孙钰淳, 程嘉, 路益嘉, 侯悦民, 季林红. 静电卡盘与晶圆之间稀薄气体传热的影响因素[J]. 清华大学学报(自然科学版), 2015, 55(7): 756-760.
[14] 袁杨, 李祥东, 屠基元. 纳米流体沸腾模型中某些物理参数的理论探讨[J]. 清华大学学报(自然科学版), 2015, 55(7): 815-820.
[15] 郭红仙,李翔宇,程晓辉. 能源桩热响应测试的模拟及适用性评价[J]. 清华大学学报(自然科学版), 2015, 55(1): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn