Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (8): 1236-1245    DOI: 10.16511/j.cnki.qhdxxb.2023.25.002
  论文 本期目录 | 过刊浏览 | 高级检索 |
曲新鹤, 胡庆祥, 倪航, 彭威, 赵钢, 王捷
清华大学 核能与新能源技术研究院, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Preliminary design and energy analysis of a steelmaking system coupled with nuclear hydrogen based on a high-temperature gas-cooled reactor
QU Xinhe, HU Qingxiang, NI Hang, PENG Wei, ZHAO Gang, WANG Jie
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(4364 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 高温气冷堆(high temperature gas-cooled reactor,HTGR)因其具有固有安全性和反应堆出口温度高的特点,在环境和能源领域拥有广阔的应用前景。HTGR不仅可以用于发电,还可以实现大规模制氢,而氢气可作为钢铁冶炼过程中的直接还原剂,有助于钢铁工业减少碳排放。该文提出了基于HTGR制氢的炼钢系统方案,包括反应堆、反应堆中间回路、制氢、发电和炼钢共5个子模块,并开展了多联产能源系统研究。其中,HTGR为制氢模块和发电模块提供热量,制氢模块产生的氢气作为还原剂和燃料进入竖炉(shaft furnace,SF)直接还原炼铁,制氢模块产生的氧气和发电模块产生的电供给电弧炉(electric arc furnace,EAF)炼钢。该文分析了碘硫循环效率、发电模块和制氢模块的功率比、直接还原铁(direct reduced iron,DRI)比例对系统产能的影响,以及系统的碳排放情况。结果表明:在发电模块与制氢模块功率比为1∶1,EAF直接还原铁占比为90%,碘硫循环制氢效率为37.8%的情况下,系统产钢率为45.6 t/h,每t钢可向电网输出1 381.5 kW·h电能,同时CO2的排放量仅为17.2 Nm3
E-mail Alert
关键词 核能制氢高温气冷堆碘硫循环炼钢    
Abstract:[Objective] High-temperature gas-cooled reactors (HTGRs) have promising applications in the face of current environmental and energy problems due to their inherent safety and high reactor outlet temperature. They can be used not only for power generation but also for large-scale hydrogen production. Hydrogen can be used as a direct reducing agent in steelmaking, contributing to carbon reduction in the steel industry. It is necessary to study the coupling of HTGRs and the steelmaking system.[Methods] In this study, an HTGR-based steelmaking system is proposed, which includes five submodules:reactor module, reactor intermediate loop module, hydrogen production module, power generation module, and steelmaking module; then, a multi-generation energy system was investigated. In the reactor module, two HTGRs are connected in parallel as heat source, their thermal power is 250 MW, and the reactor outlet temperature is 950 ℃. The heat from the reactor module is transferred to the hydrogen generation module and the power generation module through an intermediate heat exchanger. The hydrogen generation module uses hydrothermal decomposition based on the iodine-sulfur process to generate hydrogen. The heat required for the iodine-sulfur process is provided by helium in the intermediate heat exchanger circuit and by the extracted steam from the power generation module. The hydrogen produced by the hydrogen production module is routed to a shaft furnace (SF) as the reductant and fuel for direct reduction ironmaking, and the oxygen produced by the hydrogen production module and the electricity produced by the power generation module are routed to an electric arc furnace (EAF) for steelmaking. The iodine-sulfur process efficiency, the power ratio of the power generation module to the reactor, the percentage of direct reduction iron in raw materials on the EAF system capacity, and the carbon emissions of the system are analyzed.[Results] In a steelmaking system with heat supplied by two 250 MW HTGRs, 1.35 t of iron ore is required to produce 1 t of steel when the power ratio of the power generation module and the hydrogen generation module is 1:1, the proportion of direct reduction iron in the raw material is 90%, and the iodine-sulfur process efficiency is 37.8%. Simultaneously, the system can deliver 63.0 MW (4.97 GJ for 1 t of steel) of electric energy to the power grid, and the steel production rate is 45.6 t/h. The parameter analysis shows that increasing the hydrogen production efficiency of the iodine-sulfur process can significantly increase the steel yield; however, the power consumption of the iodine-sulfur process module increases simultaneously, which reduces the output to the power grid. The steelmaking system proposed in this paper has very low CO2 emissions. When the proportion of directly reduced iron in the EAF is 90%, only 17.2 Nm3 (33.8 kg) of CO2 is emitted in producing 1 t of steel.[Conclusions] Therefore, coupling the HTGR hydrogen production with the steelmaking system has great application potential for significantly reducing the CO2 emissions of the steelmaking industry and eliminating the dependence on coke.
Key wordsnuclear hydrogen production    high-temperature gas-cooled reactor    iodine-sulfur process    steelmaking
收稿日期: 2022-10-07      出版日期: 2023-07-22
通讯作者: 彭威,副教授,      E-mail:
作者简介: 曲新鹤(1988-),女,助理研究员。
曲新鹤, 胡庆祥, 倪航, 彭威, 赵钢, 王捷. 基于高温气冷堆的制氢耦合炼钢系统初步设计和能量分析[J]. 清华大学学报(自然科学版), 2023, 63(8): 1236-1245.
QU Xinhe, HU Qingxiang, NI Hang, PENG Wei, ZHAO Gang, WANG Jie. Preliminary design and energy analysis of a steelmaking system coupled with nuclear hydrogen based on a high-temperature gas-cooled reactor. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1236-1245.
链接本文:  或
[1] 国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[J]. 中国统计, 2021(3):6-9. National Bureau of Statistics of The People's Republic of China. Statistical communique of the People's Republic of China on the 2020 national economic and social development[J]. China Statistics, 2021(3):6-9. (in Chinese)
[2] WANG R R, ZHAO Y Q, BABICH A, et al. Hydrogen direct reduction (HDR) in steel industry:An overview of challenges and opportunities[J]. Journal of Cleaner Production, 2021, 329:129797.
[3] ABDIN Z, ZAFARANLOO A, RAFIEE A, et al. Hydrogen as an energy vector[J]. Renewable and Sustainable Energy Reviews, 2020, 120:109620.
[4] ŞAHIN S, ŞAHIN H M. Generation-IV reactors and nuclear hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(57):28936-28948.
[5] 史力, 赵加清, 刘兵, 等. 高温气冷堆关键材料技术发展战略[J]. 清华大学学报(自然科学版), 2021, 61(4):270-278. SHI L, ZHAO J Q, LIU B, et al. Development strategy of key materials technology for the high temperature gas-cooled reactor[J]. Journal of Tsinghua University (Science and Technolgoy), 2021, 61(4):270-278. (in Chinese)
[6] YAN X L, HINO R. Nuclear hydrogen production handbook[M]. Boca Raton:Taylor & Francis, 2011.
[7] ZHANG P, WANG L J, CHEN S Z, et al. Progress of nuclear hydrogen production through the iodine-sulfur process in China[J]. Renewable and Sustainable Energy Reviews, 2018, 81:1802-1812.
[8] ELDER R, ALLEN R. Nuclear heat for hydrogen production:Coupling a very high/high temperature reactor to a hydrogen production plant[J]. Progress in Nuclear Energy, 2009, 51(3):500-525.
[9] KUNITOMI K, YAN X, NISHIHARA T, et al. JAEA's VHTR for hydrogen and electricity cogeneration:GTHTR300C[J]. Nuclear Engineering and Technology, 2007, 39(1):9-20.
[10] SATO H, NOMOTO Y, HORII S, et al. HTTR-GT/H2 test plant-System performance evaluation for HTTR gas turbine cogeneration plant[J]. Nuclear Engineering and Design, 2018, 329:247-254.
[11] BLICKWEDE D J, BARNHART T F. Use of nuclear energy in steelmaking:Prospects and plans[C]//Proceedings of the First National Topical Meeting on Nuclear Process Heat Applications. Los Alamos, USA:Los Alamos Scientific Lab, 1974:1-3.
[12] VRABLE D L. High temperature heat exchange:Nuclear process heat applications[R]. San Diego:General Atomic Co., 1980.
[13] INAGAKI Y, KASAHARA S, OGAWA M. Merit assessment of nuclear hydrogen steelmaking with very high temperature reactor[J]. ISIJ International, 2012, 52(8):1420-1426.
[14] SHIMOKAWA K. Present status of research and development of nuclear steelmaking in Japan[J]. Transactions of the Iron and Steel Institute of Japan, 1979, 19(5):291-300.
[15] TSURUOKA K, INATANI T, MIYASUGI T, et al. Design study of nuclear steelmaking system[J]. Transactions of the Iron and Steel Institute of Japan, 1983, 23(12):1091-1101.
[16] TANAKA R, MATSUO T. Development of superalloys for intermediate heat exchanger tubes in national research and development program of nuclear steelmaking[J]. Tetsu-to-Hagane, 1982, 68(2):226-235.
[17] ABE F, ARAKI H, YOSHIDA H, et al. Corrosion behavior of nickel base heat resisting alloys for nuclear steelmaking system in high-temperature steam[J]. Transactions of the Iron and Steel Institute of Japan, 1985, 25(5):424-432.
[18] KASAHARA S, INAGAKI Y, OGAWA M. Flow sheet model evaluation of nuclear hydrogen steelmaking processes with VHTR-IS (very high temperature reactor and iodine-sulfur process)[J]. ISIJ International, 2012, 52(8):1409-1419.
[19] YAN X L, KASAHARA S, TACHIBANA Y, et al. Study of a nuclear energy supplied steelmaking system for near-term application[J]. Energy, 2012, 39(1):154-165.
[20] KASAHARA S, INAGAKI Y, OGAWA M. Process flow sheet evaluation of a nuclear hydrogen steelmaking plant applying very high temperature reactors for efficient steel production with less CO2 emissions[J]. Nuclear Engineering and Design, 2014, 271:11-19.
[21] 那树人. 炼铁工艺学[M]. 北京:冶金工业出版社, 2014. NA S R. Ironmaking technology[M]. Beijing:Metallurgical Industry Press, 2014. (in Chinese)
[22] 曲新鹤, 赵钢, 王捷, 等. 基于核能制氢的氢电联产系统能量梯级利用研究[J]. 原子能科学技术, 2021, 55(S1):37-44. QU X H, ZHAO G, WANG J, et al. Study on energy cascade utilization of hydrogen-electricity cogeneration system based on nuclear hydrogen production[J]. Atomic Energy Science and Technology, 2021, 55(S1):37-44. (in Chinese)
[23] NI H, PENG W, QU X H, et al. Thermodynamic analysis of a novel hydrogen-electricity-heat polygeneration system based on a very high-temperature gas-cooled reactor[J]. Energy, 2022, 249:123695.
[24] NI H, QU X H, PENG W, et al. Analysis of internal heat exchange network and hydrogen production efficiency of iodine-sulfur cycle for nuclear hydrogen production[J]. International Journal of Energy Research, 2022, 46(11):15665-15682.
[25] 任素波, 白明华, 龙鹄, 等. 气基竖炉直接还原技术及仿真[M]. 北京:冶金工业出版社, 2018. REN S B, BAI M H, LONG H, et al. Direct reduction technology and simulation in gas-based shaft furnace[M]. Beijing:Metallurgical Industry Press, 2018. (in Chinese)
[26] KIRSCHEN M, BADR K, PFEIFER H. Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry[J]. Energy, 2011, 36(10):6146-6155.
[27] MERAIKIB M. Effects of sponge iron on the electric arc furnace operation[J]. ISIJ International, 1993, 33(11):1174-1181.
[28] PARISI D R, LABORDE M A. Modeling of counter current moving bed gas-solid reactor used in direct reduction of iron ore[J]. Chemical Engineering Journal, 2004, 104(1-3):35-43.
[29] KUROZU S, TAKAHASHI R, TAKAHASHI Y. Reduction rates of iron oxide pellet with mixtures of hydrogen and carbon monoxide at high pressures[J]. Tetsu-to-Hagane, 1980, 66(3):336-345.
[30] HOLAPPA L. A general vision for reduction of energy consumption and CO2 emissions from the steel industry[J]. Metals, 2020, 10(9):1117.
[1] 苏阳, 李晓伟, 吴莘馨, 张作义. 核反应堆蒸汽发生器两相流不稳定性现象规律、研究方法及应用[J]. 清华大学学报(自然科学版), 2023, 63(8): 1184-1203.
[2] 吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8): 1213-1218.
[3] 陈璞, 童节娟, 刘涛, 张勤昭, 王宏. 高温气冷堆主氦风机预防性维修策略研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1219-1225.
[4] 曹军文, 覃祥富, 胡轶坤, 张文强, 于波, 张佑杰. 高温气冷堆耦合高温电解规模化制氢系统仿真[J]. 清华大学学报(自然科学版), 2023, 63(8): 1246-1256.
[5] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[6] 史力, 赵加清, 刘兵, 李晓伟, 雒晓卫, 张征明, 张平, 孙立斌, 吴莘馨. 高温气冷堆关键材料技术发展战略[J]. 清华大学学报(自然科学版), 2021, 61(4): 270-278.
[7] 李晓伟, 吴莘馨, 张作义, 赵加清, 雒晓卫. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版), 2021, 61(4): 329-337.
[8] 王捷, 王宏, 赵钢, 杨小勇, 叶萍, 曲新鹤. 高温气冷堆氦气透平压气机和主氦风机研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 350-360.
[9] 刘仁杰, 孙跃文, 刘锡明, 苗积臣, 周立业, 丛鹏. 基于螺旋CT的高温气冷堆石墨构件及碳砖缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(4): 367-376.
[10] 孙世妍, 张佑杰, 郑艳华, 夏冰. HTR-10超高温运行堆芯温度场分析[J]. 清华大学学报(自然科学版), 2021, 61(11): 1301-1307.
[11] 徐晓娜, 黄晓津. 高温气冷堆核电站计算机化规程流程的建模和验证[J]. 清华大学学报(自然科学版), 2018, 58(7): 658-663.
[12] 明亮, 杨小勇, 张佑杰, 王捷, 傅林, 李珊, 王琦. 叶顶间隙与轴向间隙对氦气压气机气动特性的影响[J]. 清华大学学报(自然科学版), 2017, 57(8): 832-837.
[13] 张竞宇, 李富, 孙玉良. 球床高温气冷堆初装堆芯的物理计算方法及验证[J]. 清华大学学报(自然科学版), 2017, 57(4): 405-409.
[14] 曲新鹤, 杨小勇, 王捷. 商用高温气冷堆氦气透平循环发电热力学参数分析和优化[J]. 清华大学学报(自然科学版), 2017, 57(10): 1114-1120.
[15] 任成, 杨星团, 李聪新, 孙艳飞, 刘志勇. 高温气冷堆球床等效导热系数实验装置模拟计算[J]. 清华大学学报(自然科学版), 2015, 55(9): 991-997.
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持