Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (8): 1173-1183    DOI: 10.16511/j.cnki.qhdxxb.2023.25.004
  综述 本期目录 | 过刊浏览 | 高级检索 |
先进核能技术中的热管应用
李衍智, 都家宇, 吴莘馨, 孙立斌, 闵琪
清华大学 核能与新能源技术研究院, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Heat pipe applications for advanced nuclear energy technology
LI Yanzhi, DU Jiayu, WU Xinxin, SUN Libin, MIN Qi
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(5780 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 在碳中和大背景下,能源结构转型已经成为世界能源体系发展的大趋势。核能能够有效填补煤炭减退过程中的电力及热力缺口,同时实现电力和供热领域的低碳化,具有布局灵活、应用广泛、不受气候环境和市场供应影响等优点,是保障国家能源安全的重要手段。热管是一种非能动的高效换热元件,具有运行温度范围广、结构紧凑、工作稳定可靠和安全性高等优点,应用于航空航天、能源和化工等多领域。热管多领域、多尺度、多环节地服务核工业,在先进核能发展进程中发挥了重要的作用。该文对先进核能概念设计和先进核能应用中的热管技术进行了综述,详细阐述了高温金属热管和热管冷却反应堆的设计概念和应用前景,介绍了核安全设施和核能城市服务设施中的热管,并提出先进热管技术展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李衍智
都家宇
吴莘馨
孙立斌
闵琪
关键词 热管先进核能技术热管冷却反应堆碳中和    
Abstract:[Significance] Aiming at carbon neutrality, energy structure transformation and upgrading has become a trend for global energy system progress. Nuclear energy can effectively fill the power and heat supply gap during coal substitution. It has the advantages of a flexible layout, wide application, and insensitivity to climate change and the global market, which ensures national energy security. A heat pipe (HP) is a passive and efficient heat exchange element with a wide temperature range, stable and reliable performance, and high security. It is ubiquitously applied in the aerospace, energy and chemical industries, as a solar collector, for electronic cooling, and in other fields. HPs are irreplaceable in advanced nuclear energy with multi-domain, multi-scale, and multi-section applications. Therefore, existing studies on HPs must be summarized for advanced nuclear technology.[Progress] According to operation temperature, HP applications in nuclear technology are classified into three parts:nuclear power/propulsion systems, unclear safety facilities, and nuclear urban service. First, heat pipe-cooled reactors (HPRs) use alkali metal high-temperature HPs to passively export the core heat, which has the advantages of inherent safety and storage and transportation. Because of a long phase transition during startup and the unraveling alkali metal dynamic and heat transfer process in the steady state and the transitory state, the startup characteristic and heat transfer performance of alkali metal high-temperature HPs have been the difficult part of HPRs development. To adapt to different energy needs, the designs of HPRs ranging from kilowatts to megawatts and the corresponding thermoelectric conversion schemes have been proposed. HPRs will have broad prospects in aerospace, ship power, deep sea exploration, land-based power supplies and other fields. Second, with passive characteristics, an HP is a better technical choice for safety facilities. In nuclear power plants, separated HPs have been applied to passive heat removal systems, passive emergency core cooling systems, passive containment cooling systems, and passive spent fuel pool cooling systems. In nuclear spacecraft cooling, an HP space radiator composed of an HP and a heat sink is a more promising space radiator, having good thermal properties, temperature conversion characteristics, environmental adaptability, anti-debris impact performance, and anti-single point failure characteristics. In a thermonuclear reactor, HP is also used in first-wall cooling. Third, HPs are mainly used in waste-heat recovery and low-temperature heat transfer to improve energy efficiency and safety in nuclear industry applications and urban services. Researchers have developed several desalination systems based on HP systems and waste heat from steam power plants and generators. Districted heating and nuclear power generation, hydrogen production, and heating triple production systems are promoted and have become popular in China. Finally, challenges in HP performance, adaptive design in HPRs, and HP operation and maintenance were discussed.[Conclusions and Prospects] The HP is perfectly in line with the advanced nuclear safety design concept. Currently, although HPs are widely used in nuclear power/propulsion systems and reactor safety facilities, their practical applications in the nuclear industry and urban service remain relatively scarce, and there is almost no participation in the intermediate temperature segment. At last, we propose the prospects of advanced HP technology.
Key wordsheat pipe    advanced nuclear energy technology    heat pipe-cooled reactor    carbon neutrality
收稿日期: 2022-11-03      出版日期: 2023-07-22
基金资助:国家自然科学基金项目(51976104)
通讯作者: 闵琪,副研究员,E-mail:minq86@tsinghua.edu.cn      E-mail: minq86@tsinghua.edu.cn
作者简介: 李衍智(1998-),女,硕士研究生。
引用本文:   
李衍智, 都家宇, 吴莘馨, 孙立斌, 闵琪. 先进核能技术中的热管应用[J]. 清华大学学报(自然科学版), 2023, 63(8): 1173-1183.
LI Yanzhi, DU Jiayu, WU Xinxin, SUN Libin, MIN Qi. Heat pipe applications for advanced nuclear energy technology. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1173-1183.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.25.004  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I8/1173
  
  
  
  
  
[1] 李文军, 肖星宇, 周圣辉, 等. 高温热管的研究进展及应用[J]. 现代化工, 2020, 40(6):15-18, 23. LI W J, XIAO X Y, ZHOU S H, et al. Research progress on high temperature heat pipes and application[J]. Modern Chemical Industry, 2020, 40(6):15-18, 23. (in Chinese)
[2] LI S N, LIANG Z T, YAN B H. A medium temperature heat pipe cooled reactor[J]. Annals of Nuclear Energy, 2022, 172:109068.
[3] 郭浩, 彭家略, 尤天伢, 等. 工质对重力热管壁温与传热特性的影响[J]. 工程热物理学报, 2021, 42(11):2893-2898. GUO H, PENG J L, YOU T Y, et al. Effect of working fluids on wall temperature and heat transfer characteristics of gravity heat pipe[J]. Journal of Engineering Thermophysics, 2021, 42(11):2893-2898. (in Chinese)
[4] 郭浩, 尤天伢, 纪献兵, 等. 重力热管壁温与传热特性的实验分析[J]. 科学技术与工程, 2021, 21(10):4036-4042. GUO H, YOU T Y, JI X B, et al. Experimental analysis of wall temperature and heat transfer characteristics of gravity heat pipe[J]. Science Technology and Engineering, 2021, 21(10):4036-4042. (in Chinese)
[5] 丁林超, 袁达忠, 唐大伟, 等. 标准黑体源用铜-R134a热管研制及均温性实验研究[J]. 计量学报, 2017, 38(3):292-295. DING L C, YUAN D Z, TANG D W, et al. Development and experimental study on the temperature uniformity of Cu-R134a heat pipe used for standard blackbody source[J]. Acta Metrologica Sinica, 2017, 38(3):292-295. (in Chinese)
[6] 沈琼, 李志松. 微型热管的增材制造与传热性能分析[J]. 科技创新与应用, 2021, 11(21):48-52, 55. SHEN Q, LI Z S. An analysis of additive manufacturing and heat transfer performance of miniature heat pipe[J]. Technology Innovation and Application, 2021, 11(21):48-52, 55. (in Chinese)
[7] 杨涛, 赵石磊, 高腾, 等. 航天分散热源控温用环路热管设计及飞行应用[J]. 宇航学报, 2021, 42(6):798-806. YANG T, ZHAO S L, GAO T, et al. Design and in-orbit application of temperature controlled loop heat pipe for aerospace distributed heat sources[J]. Journal of Astronautics, 2021, 42(6):798-806. (in Chinese)
[8] 李果, 许源, 张雨辰, 等. 径向旋转热管的数值模拟方法[J/OL]. 航空动力学报. (2022-04-06)[2022-10-13]. DOI:10.13224/j.cnki.jasp.20210639. LI G, XU Y, ZHANG Y C, et al. Numerical simulation of radial rotating heat pipe[J/OL]. Journal of Aerospace Power. (2022-04-06)[2022-10-13]. DOI:10.13224/j.cnki.jasp.20210639. (in Chinese)
[9] 姚良, 王苏明, 张红娜, 等. "接触-导热"式热管辐射散热器设计与分析[J/OL]. 中国空间科学技术. (2022-08-12)[2022-10-09]. https://kns.cnki.net/kcms2/article/abstract?v=Di9gc0lM_EuLi5fJtXh7RfvOwikpODsUXZtCXCngJzc-Jsxf4NnGg3y5UBbA1c58b3_jqw8_-JuEG9RBYPpXgyV1tRaojfWlXQh77nd7-mbukrAfmtCTaw==&uniplatform=NZKPT&language=gb. YAO L, WANG S M, ZHANG H N, et al. Design and analysis of "contact-heat conduction" heat pipe radiator[J/OL]. Chinese Space Science and Technology. (2022-08-12)[2022-10-09]. https://kns.cnki.net/kcms2/article/abstract?v=Di9gc0lM_EuLi5fJtXh7RfvOwikpODsUXZtCXCngJzc-Jsxf4NnGg3y5UBbA1c58b3_jqw8_-JuEG9RBYPpXgyV1tRaojfWlXQh77nd7-mbukrAfmtCTaw==&uniplatform=NZKPT&language=gb. (in Chinese)
[10] 朱晓军, 刘祥, 李锋, 等. 前缘一体化高温热管结构防热效果的实验研究[J]. 气体物理, 2022, 7(5):78-88. ZHU X J, LIU X, LI F, et al. Experimental study on the thermal protection effect of the leading edge integrated high-temperature heat pipe structure[J]. Physics of Gases, 2022, 7(5):78-88. (in Chinese)
[11] LI H, LIU H Y, LI M. Review on heat pipe based solar collectors:Classifications, performance evaluation and optimization, and effectiveness improvements[J]. Energy, 2022, 244:122582.
[12] 赵洪德, 刘继东, 周广启, 等. 换热器在石油化工行业中的应用及维护[J]. 造纸装备及材料, 2022, 51(3):52-54. ZHAO H D, LIU J D, ZHOU G Q, et al. Application and maintenance of heat exchanger in petrochemical industry[J]. Papermaking Equipment & Materials, 2022, 51(3):52-54. (in Chinese)
[13] 曹斌, 陆琼文. 医学实验室空调通风系统能效提升技术研究[J]. 暖通空调, 2022, 52(9):147-152. CAO B, LU Q W. Energy efficiency improvement technologies of air conditioning and ventilation system in medical laboratories[J]. Heating Ventilating & Air Conditioning, 2022, 52(9):147-152.(in Chinese)
[14] 路膺祚, 鲍玲玲, 赵旭, 等. 矿用热管换热器析湿工况换热分析[J]. 煤炭工程, 2022, 54(3):165-170. LU Y Z, BAO L L, ZHAO X, et al. Heat transfer of mine heat pipe heat exchanger in dehumidifying conditions[J]. Coal Engineering, 2022, 54(3):165-170. (in Chinese)
[15] 杨光明. 热管式空气预热器在制氢转化炉上的应用[J]. 石油化工设备技术, 1999, 20(4):21-23. YANG G M. Application of heat tube type air preheater on hydrogen manufacturing conversion furnace[J]. Petro-Chemical Equipment Technology, 1999, 20(4):21-23. (in Chinese)
[16] 杨晓菁, 李玉锦. 热管空气预热器在锅炉中的应用[J]. 应用能源技术, 2020(9):43-45. YANG X J, LI Y J. Application of heat pipe air preheater in industrial boiler[J]. Applied Energy Technology, 2020(9):43-45. (in Chinese)
[17] ZHANG H N, SHAO S Q, XU H B, et al. Free cooling of data centers:A review[J]. Renewable and Sustainable Energy Reviews, 2014, 35:171-182.
[18] IYENGAR M, DAVID M, PARIDA P, et al. Server liquid cooling with chiller-less data center design to enable significant energy savings[C]//Proceedings of the 28th Annual IEEE Semiconductor Thermal Measurement and ManagementSymposium (SEMI-THERM). San Jose, USA:IEEE, 2012:212-223.
[19] WANG X L, WEN Q W, YANG J X, et al. A review on data centre cooling system using heat pipe technology[J]. Sustainable Computing:Informatics and Systems, 2022, 35:100774.
[20] OUCHI M, ABE Y, FUKAGAYA M, et al. New thermal management systems for data centers[J]. Journal of Thermal Science and Engineering Applications, 2012, 4(3):031005.
[21] 辛保安, 陈梅, 赵鹏, 等. 碳中和目标下考虑供电安全约束的我国煤电退减路径研究[J]. 中国电机工程学报, 2022, 42(19):6919-6931. XIN B A, CHEN M, ZHAO P, et al. Research on coal power generation reduction path considering power supply adequacy constraints under carbon neutrality target in China[J]. Proceedings of the CSEE, 2022, 42(19):6919-6931. (in Chinese)
[22] 中国核工业. 全球能源凛冬将至, 各国对核电不再"举棋不定"[OL]. (2022-09-21)[2022-10-05]. https://www.cnnpn.cn/article/32803.html. China Nuclear Industry. As global energy winter approaches, countries no longer ‘ambivalent’ about nuclear power[OL]. (2022-09-21)[2022-10-05]. https://www.cnnpn.cn/article/32803.html. (in Chinese)
[23] 张成岗, 王宇航. 后常规科学视域下的新型举国体制与科技治理现代化[J]. 云南社会科学, 2022(4):28-36. ZHANG C G, WANG Y H. New national system and modernization of science and technology governance from the perspective of post-normal science[J]. Social Sciences in Yunnan, 2022(4):28-36. (in Chinese)
[24] 刘叶, 周磊, 昝元峰, 等. 热管技术在先进反应堆中的应用现状[J]. 核动力工程, 2016, 37(6):121-124. LIU Y, ZHOU L, ZAN Y F, et al. Review of heat pipe application in advanced nuclear reactors[J]. Nuclear Power Engineering, 2016, 37(6):121-124. (in Chinese)
[25] 吉宇, 毛晨瑞, 孙俊, 等. 核热火箭发动机系统循环方案分析与设计[J]. 火箭推进, 2022, 48(1):14-21. JI Y, MAO C R, SUN J, et al. Analysis and design of system cycle for nuclear thermal rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(1):14-21. (in Chinese)
[26] WANG C L, SUN H, TANG S M, et al. Thermal-hydraulic analysis of a new conceptualheat pipe cooled small nuclear reactor system[J]. Nuclear Engineering and Technology, 2020, 52(1):19-26.
[27] SVIRIDENKO I I. Modernization of the WWER-1000 emergency repair cooling system using the low-temperature heat pipe heat-exchangers[C]//International Conference ‘NPP life management’. Kiev, Ukraine:Ukrainian Nuclear Society, 2003:11-12.
[28] HAN F, KUANG Y W, YE C, et al. Investigation on thermal-hydraulic characteristics of the spent fuel pool with a complete passive cooling system[J]. Annals of Nuclear Energy, 2022, 177:109326.
[29] 陈畅, 蒋科成, 王万景, 等. 水冷陶瓷包层第一壁制造偏差对传热与热应力的影响分析[J]. 核聚变与等离子体物理, 2022, 42(3):314-321. CHEN C, JIANG K C, WANG W J, et al. Study on the effect of the manufacturing tolerance of WCCB blanket first wall on the heat transfer and thermal stress[J]. Nuclear Fusion and Plasma Physics, 2022, 42(3):314-321. (in Chinese)
[30] JOUHARA H, ANASTASOV V, KHAMIS I. Potential of heat pipe technology in nuclear seawater desalination[J]. Desalination, 2009, 249(3):1055-1061.
[31] 邵月月, 马国远, 王月月, 等. 多联式热泵驱动热管复合供热装置的实验研究[J]. 制冷学报, 2020, 41(4):32-36, 67. SHAO Y Y, MA G Y, WANG Y Y, et al. Experimental study on multi-connected heat pump/heat pipe heating device[J]. Journal of Refrigeration, 2020, 41(4):32-36, 67. (in Chinese)
[32] 余红星, 马誉高, 张卓华, 等. 热管冷却反应堆的兴起和发展[J]. 核动力工程, 2019, 40(4):1-8. YU H X, MA Y G, ZHANG Z H, et al. Initiation and development of heat pipe cooled reactor[J]. Nuclear Power Engineering, 2019, 40(4):1-8. (in Chinese)
[33] XU J, ZHOU Q, TIAN H, et al. High-temperature gas-cooled reactor nuclear power generation, hydrogen production and heating triple production system, has middle cooler whose heat exchange pipe is connected with heat exchange station:CN114215617-A[P]. 2022-03-22.
[34] SUN H, WANG C L, MA P, et al. Conceptual design and analysis of a multipurpose micro nuclear reactor power source[J]. Annals of Nuclear Energy, 2018, 121:118-127.
[35] 杨海旺, 代智文, 王成龙. 碱金属高温热管传热特性研究综述[J]. 热加工工艺, 2022, 51(20):1-7. YANG H W, DAI Z W, WANG C L. Review on transferring characteristics of alkali metal high temperature heat pipe[J]. Hot Working Technology, 2022, 51(20):1-7. (in Chinese)
[36] 余占江. 热管技术在核反应堆中的应用研究[D]. 成都:成都理工大学, 2014. YU Z J. The research of heat pipe technology applied in the field of nuclear reactor[D]. Chengdu:Chengdu University of Technology, 2014. (in Chinese)
[37] ZHANG Z Q, CHAI X M, WANG C L, et al. Numerical investigation on startup characteristics of high temperature heat pipe for nuclear reactor[J]. Nuclear Engineering and Design, 2021, 378:111180.
[38] TENG W F, WANG X Y, ZHU Y Z. Experimental investigations on start-up and thermal performance of sodium heat pipe under swing conditions[J]. International Journal of Heat and Mass Transfer, 2020, 152:119505.
[39] WANG C L, ZHANG L R, LIU X, et al. Experimental study on startup performance of high temperature potassium heat pipe at different inclination angles and input powers for nuclear reactor application[J]. Annals of Nuclear Energy, 2020, 136:107051.
[40] TIAN Z X, LIU Y, WANG C L, et al. Single/multi-objective optimization and comparative analysis of liquid-metal heat pipe[J]. International Journal of Energy Research, 2022, 46(12):17521-17539.
[41] TIAN Z X, ZHANG J R, WANG C L, et al. Experimental evaluation on heat transfer limits of sodium heat pipe with screen mesh for nuclear reactor system[J]. Applied Thermal Engineering, 2022, 209:118296.
[42] TIAN Z X, LIU X, WANG C L, et al. Experimental investigation on the heat transfer performance of high-temperature potassium heat pipe for nuclear reactor[J]. Nuclear Engineering and Design, 2021, 378:111182.
[43] SUN H, LIU X, LIAO H Y, et al. Experiment study on thermal behavior of a horizontal high-temperature heat pipe under motion conditions[J]. Annals of Nuclear Energy, 2022, 165:108760.
[44] JI Y, YUAN D Z, CHE Z X, et al. Study on adaptive heat transfer performance of high temperature heat pipe[J]. Annals of Nuclear Energy, 2021, 163:108536.
[45] TOURNIER J M, EL-GENK M S. Startup of a horizontal lithium-molybdenum heat pipe from a frozen state[J]. International Journal of Heat & Mass Transfer, 2003, 46(4):671-685.
[46] 赵蔚琳, 庄骏, 张红. 影响高温钠热管起动因素的实验研究[C]//第八届全国热管会议论文集. 成都, 中国:中国工程热物理学会, 2002:114-118. ZHAO W L, ZHUANG J, ZHANG H. Experimental study on the factors affecting the starting of high temperature sodium heat pipe[C]//Proceedings of the 8th National Heat Pipe Conference. Chengdu, China:Chinese Society of Engineering Thermophysics, 2002:114-118. (in Chinese)
[47] LIU X, ZHANG R, LIANG Y, et al. Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor[J]. Annals of Nuclear Energy, 2020, 142:107412.
[48] TOURNIER J M, EL-GENK M S. Reactor lithium heat pipes for HP-STMCs space reactor power system[J]. AIP Conference Proceedings, 2004, 699:781-792.
[49] POSTON D I. The heat pipe-operated mars exploration reactor (HOMER)[R]. Los Alamos:Los Alamos National Lab, 2000.
[50] POSTON D I, GODFROY T, MCCLURE P R, et al. Kilopower Project-KRUSTY experiment nuclear design[R]. Los Alamos:Los Alamos National Lab, 2015.
[51] BESS J D. A basic LEGO reactor design for the provision of lunar surface power[R]. Idaho:Office of Scientific & Technical Information Technical Reports, 2008.
[52] EL-GENK M S, TOURNIER J M P."SAIRS":Scalable Amtecintegrated reactor space power system[J]. Progress of Nuclear Energy, 2004, 45(1):25-69.
[53] BUSHMAN A, CARPENTER D M, ELLIS T S, et al. The martian surface reactor:An advanced nuclear power station for manned extraterrestrial exploration[R]. Cambridge:Massachusetts Institute of Technology, 2004.
[54] MCCLURE P R, POSTON D I, DASARI V R, et al. Design of megawatt power level heat pipe reactors[R]. Los Alamos:Los Alamos National Lab, 2015.
[55] ZHANG W W, ZHANG D L, WANG C L, et al. Conceptual design and analysis of a megawatt power level heat pipe cooled space reactor power system[J]. Annals of Nuclear Energy, 2020, 144:107576.
[56] ZHANG W W, ZHANG D L, TIAN W X, et al. Thermal-hydraulic analysis of the improved TOPAZ-II power system using a heat pipe radiator[J]. Nuclear Engineering and Design, 2016, 307:218-233.
[57] 缪力威. Kilopower与KRUSTY的发展脉络及研发现状[J]. 科技创新导报, 2020, 17(17):65-69. MIAO L W. Development context and research and development status of Kilopower and KRUSTY[J]. Science and Technology Innovation Herald, 2020, 17(17):65-69. (in Chinese)
[58] 伍浩松, 郭志锋. 美国防部资助三种移动式微堆研发[J]. 国外核新闻, 2020(4):10. WU H S, GUO Z F. The U.S. Department of Defense is funding development of three mobile micro-reactors[J]. Foreign Nuclear News, 2020(4):10. (in Chinese)
[59] 陈杰, 高劭伦, 夏陈超, 等. 空间堆核动力技术选择研究[J]. 上海航天, 2019, 36(6):1-10. CHEN J, GAO S L, XIA C C, et al. Study on space nuclear power technological option[J]. Aerospace Shanghai, 2019, 36(6):1-10. (in Chinese)
[60] 柏莹. 锂冷航空核动力系统传热与推进特性研究[D]. 合肥:中国科学技术大学, 2019. BAI Y. Study on heat transfer and propulsion characteristics of lithium-cooled nuclear power system for aviation[D]. Hefei:University of Science and Technology of China, 2019. (in Chinese)
[61] 秋穗正, 张泽秦, 张智鹏, 等. 海洋静默式热管反应堆热工水力特性研究[J]. 原子能科学技术, 2022, 56(6):989-1004. QIU S Z, ZHANG Z Q, ZHANG Z P, et al. Study on thermal-hydraulic characteristics of ocean silent heat pipe cooled reactor[J]. Atomic Energy Science and Technology, 2022, 56(6):989-1004. (in Chinese)
[62] MCCLURE P R, REID R S, DIXON D D. Advantages and applications of megawatt-sized heat-pipe reactors[R]. La Grange Park:American Nuclear Society, 2012.
[63] STERBENTZ J W, WERNER J E, MCKELLAR M G, et al. Special purpose nuclearreactor(5 MW) for reliable power at remote sites assessment report[R]. Idaho Falls:Idaho National Laboratory, 2017.
[64] JEONG Y S, KIM K M, KIM I G, et al. Hybrid heat pipe based passive in-core cooling system for advanced nuclear power plant[J]. Applied Thermal Engineering, 2015, 90:609-618.
[65] KIM K M, BANG I C. Comparison of flooding limit and thermal performance of annular and concentric thermosyphons at different fill ratios[J]. Applied Thermal Engineering, 2016, 99:179-188.
[66] OHASHI K, HAYAKAWA H, YAMADA M, et al. Preliminary study on the application of the heat pipe to the passive decay heat removal system of the modular HTR[J]. Progress in Nuclear Energy, 1998, 32(3-4):587-594.
[67] WANG M J, MANERA A, PETROV V, et al. Passive decay heat removal system design for the integral inherent safety light water reactor (I2S-LWR)[J]. Annals of Nuclear Energy, 2020, 145:106987.
[68] CHOI J, LIM C, KIM H. Fork-end heat pipe for passive air cooling of spent nuclear fuel pool[J]. Nuclear Engineering and Design, 2021, 374:111081.
[69] 化新超, 李星星, 潘良明. 基于分离式热管构成的非能动安全壳冷却系统传热性能影响因素研究[J]. 核安全, 2022, 21(3):62-69. HUA X C, LI X X, PAN L M. Research on influence factors of heat transfer performance of passive containment cooling system based on separated heat pipes[J]. Nuclear Safety, 2022, 21(3):62-69. (in Chinese)
[70] 姜舒婷, 邹文重. 华龙一号非能动安全壳冷却系统对严重事故后果影响研究[J]. 原子能科学技术, 2022, 56(2):374-378. JIANG S T, ZOU W Z. Study on effect of passive containment cooling system for HPR1000 on severe accident consequence[J]. Atomic Energy Science and Technology, 2022, 56(2):374-378. (in Chinese)
[71] WANG L, YANG Y P, LIU M H, et al. Transient thermal-hydraulic analysis of heat pipe cooled passive residual heat removal system of molten salt reactor[J]. International Journal of Energy Research, 2021, 45(2):1599-1612.
[72] 刘逍, 王成龙, 苏光辉, 等. 多用途小型核反应堆电源热工水力设计分析[C/OL]. (2019-11-06)[2022-10-08]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CPFD&dbname=CPFDLAST2020&filename=ZKJD201911001153&uniplatform=NZKPT&v=JnJArah8unjdqGwoghe4w2ns1lkBjUmrz8hD_s7zon39MweS_ldfZKsfUtqxzK1YjjySQbEDL_0%3d. LIU X, WANG C L, SU G H, et al. Reactor core design and analysis for a micro nuclear power source[C/OL]. (2019-11-06)[2022-10-08]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CPFD&dbname=CPFDLAST2020&filename=ZKJD201911001153&uniplatform=NZKPT&v=JnJArah8unjdqGwoghe4w2ns1lkBjUmrz8hD_s7zon39MweS_ldfZKsfUtqxzK1YjjySQbEDL_0%3d. (in Chinese)
[73] HU C J, WANG H Y, WU B, et al. Effect of heat pipe failure on performance of residual heat removal system with heat pipe for small lead-based reactor[J]. E3S Web of Conferences, 2021, 248:01021.
[74] XU J X, HOU M W, DING M, et al. Experimental study on separate heat pipe-type passive residual heat removal system of swimming pool-type low-temperature heating reactor[J]. Nuclear Engineering and Design, 2022, 391:111743.
[75] QIAO K, TAO H Z, LI Y N, et al. Numerical study on long-term passive heat removal of EPRHR cooling water tank (CWT) using heat pipe heat exchanger[J]. Annals of Nuclear Energy, 2022, 175:109212.
[76] LU P, YAN X D, WU R, et al. Numerical simulation and conceptual design of an MW-grade space heat pipe radiator[J/OL]. Numerical Heat Transfer, Part A:Applications. (2022-08-09)[2022-10-13]. DOI:10.1080/10407782.2022.2107367.
[77] 张昊春, 刘秀婷, 魏前明, 等. MW级空间核反应堆系统热管式辐射散热器分析及优化[J]. 原子能科学技术, 2020, 54(7):1161-1167. ZHANG H C, LIU X T, WEI Q M, et al. Analysis and optimization of heat pipe radiation radiator for MW space nuclear reactor system[J]. Atomic Energy Science and Technology, 2020, 54(7):1161-1167. (in Chinese)
[78] 张秀, 张昊春, 刘秀婷, 等. 空间核电源热管式辐射散热器热分析与参数优化[J]. 宇航学报, 2019, 40(4):452-458. ZHANG X, ZHANG H C, LIU X T, et al. Thermal analysisand parameter optimization of a heat-pipe radiator for space nuclear power[J]. Journal of Astronautics, 2019, 40(4):452-458. (in Chinese)
[79] KOVALENKO V, KHRIPUNOV V, ANTIPENKOV A, et al. Heat-pipes-based first wall[J]. Fusion Engineering and Design, 1995, 27(1-2):544-549.
[80] DEMICK L. High temperature gas-cooled reactor projected markets and preliminary economics[R]. Idaho Falls:Idaho National Laboratory, 2011.
[81] SHOEIBI S, MIRJALILY S A A, KARGARSHARIFABAD H, et al. A comprehensive review on performance improvement of solar desalination with applications of heat pipes[J]. Desalination, 2022, 540:115983.
[82] HEGAZY A, HEGAZY M, ENGEDA A. A novel desalination system for utilizing waste heat contained in cooling salt water of a steam plant condenser[J]. Desalination, 2015, 371:58-66.
[83] TANAKA H, PARK C D. Experimental study of distiller with heatpipe utilizing waste heat from a portable electric generator[J]. Desalination, 2012, 302:43-49.
[84] GAO W Z, LI C S, XU C D, et al. Experimental study on water separation process in a novel spray flash vacuum evaporator with heat-pipe[J]. Desalination, 2016, 386:39-47.
[85] 曾斌, 李言瑞, 屈凡玉, 等. 核能供热发展模式研究[J]. 能源, 2022(3):68-71. ZENG B, LI Y R, QU F Y, et al. Research on the development model of nuclear energy heating[J]. Energy, 2022(3):68-71. (in Chinese)
[86] 付嘉衡. 基于动力型热管的多能互补供热系统的性能研究[D]. 青岛:青岛大学, 2021.FU J H. Performance research of multi-energy complementary heating system based on dynamic heat pipe[D]. Qingdao:Qingdao University, 2021. (in Chinese)
[87] 国家能源局. 核能供热基本原理[N/OL]. (2022-06-08)[2022-10-13]. http://www.nea.gov.cn/2022-06/08/c_1310617345.htm. National Energy Administration. Basic principles of nuclear heating[N/OL]. (2022-06-08)[2022-10-13]. http://www.nea.gov.cn/2022-06/08/c_1310617345.htm. (in Chinese)
[88] ANDO M. Application of heat pipes to nuclear steel making[J].Nuclear Engineering International, 1976, 21(244):38-39.
[1] 张友佳, 蒋顺利, 周慧辉, 袁德文, 吴张华, 徐建军, 闫晓, 苏东川, 田文喜. 高温热管耦合热声发电机运行特性试验研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1204-1212.
[2] 宋媛媛, 姚恩建, 徐洪磊, 黄全胜, 吴睿, 王人洁. 交通运输领域应对气候变化策略及路径[J]. 清华大学学报(自然科学版), 2023, 63(11): 1707-1718.
[3] 唐云霓, 闫如雪, 周艳玲. 碳中和愿景下能源政策的结构表征与优化路径[J]. 清华大学学报(自然科学版), 2023, 63(1): 1-14.
[4] 杨斌, 刘仲铠, 林柯利, 廖万雄, 王乔. 面向碳中和与先进动力的燃烧反应动力学研究方法进展[J]. 清华大学学报(自然科学版), 2022, 62(4): 663-677.
[5] 王彦哲, 周胜, 王宇, 秦旭映, 陈福冰, 欧训民. 中国核电和其他电力技术环境影响综合评价[J]. 清华大学学报(自然科学版), 2021, 61(4): 377-384.
[6] 王屹航, 杨元凯, 刘通, 王沫然. 基于孔隙网络模型的电池热管理系统跨尺度分析[J]. 清华大学学报(自然科学版), 2021, 61(2): 170-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn