Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (12): 1974-1983    DOI: 10.16511/j.cnki.qhdxxb.2023.25.008
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
铁/镍基合金过渡接头的制造及微观组织表征
刘洁钰1, 李克俭1,2, 韩潮宇1, 蔡志鹏1,2
1. 清华大学 机械工程系, 北京 100084;
2. 清华大学 机械工程系, 先进成形制造教育部重点实验室, 北京 100084
Fabrication and microstructure characterization of graded transition joints between Fe- and Ni- based alloys
LIU Jieyu1, LI Kejian1,2, HAN Chaoyu1, CAI Zhipeng1,2
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(27534 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 使用镍(Ni)基焊材连接马氏体耐热钢与镍基合金形成的异种金属焊接接头(dissimilar metal welds,DMWs)在高超超临界火电机组中有着广泛的应用。由于镍基焊缝与马氏体耐热钢的化学成分差异较大,在镍基焊缝与马氏体耐热钢的界面附近存在较大的成分梯度,导致界面两侧的微观组织和力学性能差异较大,界面往往成为该类接头蠕变并早期失效的位置。本研究以COST E马氏体耐热钢和617B镍基合金作为母材,采用双丝电弧增材制造技术制造了一种新的梯度过渡接头(graded transition joint,GTJ)。对该GTJ进行了化学成分、微观组织和硬度分析,结果表明:相较于常规DMWs,GTJ的化学成分梯度大幅降低;从马氏体耐热钢侧到镍基合金侧,过渡区域的基体组织类型从淬火马氏体转变为马氏体+奥氏体两相共存,最后全部转变为γ镍基组织,硬度分布表现为在淬火马氏体区最高(最高约500 HV0.2),进入两相共存区后急剧下降(低于200 HV0.2),在γ镍基组织区域又缓慢增加(不高于250 HV0.2)。使用动力学计算方法考查了两相共存区在凝固过程中的元素分配行为,发现Ni、铬(Cr)和钼(Mo)元素倾向于在枝晶界处偏析,从而降低枝晶界处马氏体的转变起始温度(martensite start,Ms),使枝晶界处在室温时依旧为奥氏体组织,而枝晶芯部转变为马氏体组织。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘洁钰
李克俭
韩潮宇
蔡志鹏
关键词 异种金属焊接接头梯度过渡接头化学成分微观组织硬度    
Abstract:[Objective] Dissimilar metal welds (DMWs) between martensitic heat-resistant steels and nickel-based alloys filled with nickel-based filler metals are widely used in advanced ultra-supercritical power plants. A large composition gradient is present at the interface between weld metals and martensitic heat-resistant steels due to the obvious difference in chemical composition between these two materials, resulting in an abrupt change in microstructure and mechanical properties across the interface. For DMWs exposed to creep conditions, interfacial failure is a commonly seen failure mode that reduces the creep life to less than half of the expected life. To eliminate the interface with a large composition gradient, a graded transition joint (GTJ) between the martensitic heat-resistant steel (named COST E) and 617B nickel-based alloys is fabricated using a dual-wire tungsten inert gas (TIG) welding technique in the present study.[Methods] The key part of the GTJ is a functionally graded material (FGM) in the middle, of which the chemical composition varied gradually from martensitic heat-resistant steels to 617B nickel-based alloys over a distance of 14 mm or less. During fabrication, the feeding rates of the two wires are varied in a controlled manner to obtain the desired dilution rates. After FGM fabrication is completed, the two ends of the FGM are joined by similar welds with corresponding base metals, thus fabricating a GTJ between COST E steels and 617B nickel-based alloys. Optical microscopy, scanning electron microscopy, energy dispersive spectrometry, electron probe microanalysis (EPMA), electron back-scattered diffraction, and a microhardness tester are used to investigate the chemical compositions, and the microstructure and hardness of the GTJ in as-weld condition are characterized. The dynamic kinetics module of Thermo-Calc, DICTRA, is used to investigate why mixed austenite (A)+martensite (M) formed based on the Scheil solidification equation.[Results] The results showed that the chemical composition gradient was greatly reduced compared with conventional DMWs, as expected, and the microstructure from the steel side to the nickel-based side varied from quenched martensite, mixed A+M, and finally, full γ nickel-based microstructure. A hardness peak as high as 500 HV0.2 was found in the quenched martensite region, and hardness decreased sharply to lower than 200 HV0.2 once entering the martensite and austenite dual-phase region, followed by a gradual increase to 250 HV0.2 or less in the full γ nickel-based microstructure region. The dynamic kinetics module revealed that Ni, Cr, and Mo tended to segregate into interdendritic regions during solidification.[Conclusions] Ni, Cr, and Mo segregation are due to the reason that the equilibrium partition coefficients of the three elements are less than 1, meaning that these elements are higher in concentration in the liquid than in the solid at the liquid/solid interface. Therefore, the concentrations of these elements in the newly formed solid are higher than those in the previously formed solid. The segregation of these elements in interdendritic regions lowers the martensite transformation starting temperature Ms below the ambient temperature, and thus, the austenite in interdendritic regions is stable even at room temperature, while the austenite in the dendrite core region transforms into martensite in the following cooling process, thus forming the A+M dual-phase region.
Key wordsdissimilar metal welds    graded transition joints    chemical composition    microstructure    hardness
收稿日期: 2022-10-04      出版日期: 2023-11-06
基金资助:国家自然科学基金青年科学基金资助项目(51901113)
通讯作者: 李克俭,副研究员,E-mail:kejianli@mail.tsinghua.edu.cn     E-mail: kejianli@mail.tsinghua.edu.cn
作者简介: 刘洁钰(1995—),男,硕士研究生。
引用本文:   
刘洁钰, 李克俭, 韩潮宇, 蔡志鹏. 铁/镍基合金过渡接头的制造及微观组织表征[J]. 清华大学学报(自然科学版), 2023, 63(12): 1974-1983.
LIU Jieyu, LI Kejian, HAN Chaoyu, CAI Zhipeng. Fabrication and microstructure characterization of graded transition joints between Fe- and Ni- based alloys. Journal of Tsinghua University(Science and Technology), 2023, 63(12): 1974-1983.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.25.008  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I12/1974
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] NOMOTO H. Development in materials for ultra-supercritical (USC) and advanced ultra-supercritical (A-USC) steam turbines[M]//TANUMA T. Advances in Steam Turbines for Modern Power Plants. Cambridge:Woodhead Publishing, 2017:263-278.
[2] VISWANATHAN R, COLEMAN K, RAO U. Materials for ultra-supercritical coal-fired power plant boilers[J]. International Journal of Pressure Vessels and Piping, 2006, 83(11-12):778-783.
[3] KLUEH R L, KING J F. Austenitic stainless steel-ferritic steel weld joint failures[J]. Welding Journal, 1982, 61(9):302.
[4] DUPONT J N. Microstructural evolution and high temperature failure of ferritic to austenitic dissimilar welds[J]. International Materials Reviews, 2012, 57(4):208-234.
[5] DOOLEY B, CHANG P S. The current state of boiler tube failures in fossil plants[J]. Power Plant Chemistry, 2000, 2(4):197-203.
[6] NICHOLSON R D. Effect of aging on interfacial structures of nickel-based transition joints[J]. Metals Technology, 1984, 11(1):115-124.
[7] PARKER J D, STRATFORD G C. Characterisation of microstructures in nickel based transition joints[J]. Journal of Materials Science, 2000, 35(16):4099-4107.
[8] DUPONT J N, KUSKO C S. Technical Note:Martensite formation in austenitic/ferritic dissimilar alloy welds[J]. Welding Journal, 2007, 86(2):51s-54s.
[9] SHIN K Y, LEE J W, HAN J M, et al. Transition of creep damage region in dissimilar welds between Inconel 740H Ni-based superalloy and P92 ferritic/martensitic steel[J]. Materials Characterization, 2018, 139:144-152.
[10] PARKER J D, STRATFORD G C. The high-temperature performance of nickel-based transition joints:II. Fracture behaviour[J]. Materials Science and Engineering:A, 2001, 299(1-2):174-184.
[11] BHADURI A K, VENKADESAN S, RODRIGUEZ P, et al. Transition metal joints for steam generators:An overview[J]. International Journal of Pressure Vessels and Piping, 1994, 58(3):251-265.
[12] GALLER J P, DUPONT J N, BABU S S, et al. Microstructural evolution of graded transition joints[J]. Metallurgical and Materials Transactions A, 2019, 50(5):2201-2217.
[13] BRENTRUP G J, DUPONT J N. Fabrication and characterization of graded transition joints for welding dissimilar alloys[J]. Welding Journal, 2013, 92(3):72s-79s.
[14] ZHANG C, CHEN F, HUANG Z F, et al. Additive manufacturing of functionally graded materials:A review[J]. Materials Science and Engineering:A, 2019, 764:138209.
[15] REICHARDT A, SHAPIRO A A, OTIS R, et al. Advances in additive manufacturing of metal-based functionally graded materials[J]. International Materials Reviews, 2021, 66(1):1-29.
[16] PAN Z X, DING D H, WU B T, et al. Arc welding processes for additive manufacturing:A review[M]//CHEN S B, ZHANG Y M, FENG Z L. Transactions on Intelligent Welding Manufacturing. Singapore:Springer, 2018:3-24.
[17] 国家市场监督管理总局,中国国家标准化管理委员会.气体保护电弧焊用热强钢实心焊丝:GB/T 39279-2020[S].北京:中国标准出版社, 2020. State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Wire electrodes, wires, rods and deposits for gas shielded arc welding of creep-resisting steels:GB/T 39279-2020[S]. Beijing:Standards Press of China, 2020.(in Chinese)
[18] ZHANG Y, CAI Z P, HAN C Y, et al. Macrosegregation induced interface structure and its effect on creep failure in dissimilar metal welds between Ni-based alloy and 10% Cr martensitic steel[J]. Materials Science and Engineering:A, 2021, 824:141847.
[19] KOU S. Welding metallurgy:2nd ed[M]. Hoboken:Wiley-Interscience, 2003.
[20] ZHANG Y, LI K J, CAI Z P, et al. Creep rupture properties of dissimilar metal weld between Inconel 617B and modified 9% Cr martensitic steel[J]. Materials Science and Engineering:A, 2019, 764:138185.
[1] 应少军, 陈志同, 李建伟, 赵越. 涂层型螺栓的弱化机理分析及加工工艺改进[J]. 清华大学学报(自然科学版), 2022, 62(9): 1539-1547.
[2] 韩飞, 周子浩, 王允. Q&P980超高强钢的循环加载性能和微观组织表征[J]. 清华大学学报(自然科学版), 2018, 58(7): 677-683.
[3] 李克俭, 蔡志鹏, 李轶非, 胡梦佳, 潘际銮. 长期高温时效对有碳迁移发生的焊接接头的影响[J]. 清华大学学报(自然科学版), 2015, 55(10): 1051-1055.
[4] 屈岳波, 曹彬, 王梁, 张伯奇, 吴健栋, 蔡志鹏, 潘际銮. 窄间隙埋弧焊接头熔合区弱化的研究[J]. 清华大学学报(自然科学版), 2014, 54(3): 305-308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn