Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (4): 585-593    DOI: 10.16511/j.cnki.qhdxxb.2023.25.009
  论文 本期目录 | 过刊浏览 | 高级检索 |
典型富氢燃料气预混火焰的熄灭特性
邹俊, 李昭兴, 张海, 吕俊复, 张扬
清华大学 能源与动力工程系, 热科学与动力工程教育部重点实验室, 北京 100084
Extinction characteristics of premixed flames of typical hydrogen-rich fuel gas
ZOU Jun, LI Zhaoxing, ZHANG Hai, Lü Junfu, ZHANG Yang
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(8150 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 宽燃料适应性是先进燃气轮机的重要设计要求之一,燃用来源广泛的富氢燃料气是燃气轮机未来发展的重要方向,因此富氢燃料气的湍流火焰熄火特性应成为燃气轮机燃烧室设计过程中重点关注的问题。该文通过使用优化的对冲火焰实验方法和数值模拟计算方法,比较了2种典型的富氢燃料气在层流和湍流燃烧状态下的熄灭拉伸率,并分析了贫燃侧2种燃料预混火焰熄灭拉伸率差异的主要原因。结果表明:在该文研究的工况范围内,采用数值模拟方法可较好地预测层流和湍流火焰的熄灭拉伸率。在层流燃烧状态下,火焰锋面内活性自由基H、O和OH的物质的量浓度相对更高的富氢燃料气,其火焰锋面内部的关键化学反应速率和释放热量的速度更高,因此能抵抗更高程度的火焰拉伸形变。湍流作用加快了火焰锋面内部的反应速率,但同时会使热量更快地从火焰锋面内部向外输运,相比于层流火焰,湍流火焰熄灭拉伸率降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹俊
李昭兴
张海
吕俊复
张扬
关键词 富氢燃烧预混火焰对冲火焰熄灭拉伸率    
Abstract:[Objective] Adaptability of fuel is an essential design requirement of advanced gas turbines. Hydrogen-rich fuel gas can be obtained from a variety of sources, and its use will be an important part of the future development of gas turbines. When using gas turbine combustion technology to burn hydrogen-rich fuel, if the flame goes out, it will lead to unsafe equipment. As a result, the extinction of turbulent hydrogen-rich fuel flame is the key problem when we design gas turbine combustors. [Methods] In this study, the optimized experimental approach and numerical simulation method of counterflow flame are used to compare the extinction strain rate of two typical hydrogen-rich fuel gases under laminar and turbulent combustion conditions, and the main reasons for the difference were examined. Two typical hydrogen-rich fuel gases used in this study are called FA and FB in this paper. As far as FA is concerned, the CO component ratio of fuel is higher, the dilution ratio is lower, and the calorific value is significantly higher. FA can be considered as the typical hydrogen-rich synthetic gas obtained from entrained flow coal gasification, and FB can be regarded as the typical hydrogen-rich synthetic gas obtained from fluidized bed coal gasification, both of which have certain representative significance. The upper nozzle of the counterflow flame produces nitrogen, while the lower nozzle produces premixed fuel with varying equivalence ratios. The equivalence ratio covers a range of 0.4-1.0. The gas temperature at the nozzle outlet is 300 K. The particle image velocimetry (PIV) system is used to obtain the velocity information of the flow field at the nozzle outlet. The turbulent transport model is added to the OPPDIF code for numerical simulation. [Results] The results demonstrated that, within the range of working conditions studied, the numerical simulation method used in this paper could well predict the extinction strain rate of laminar and turbulent flames. The difference between experimental and simulation results was less than ±10% for a laminar counterflow flame and ±40% for a turbulent counterflow flame. Due to the instability of the turbulent flow field, the measurement of the extinction strain rate fluctuated greatly during the turbulent combustion experiment, and the error bar was greater than that of the laminar combustion experiment. [Conclusions] Under laminar combustion conditions, hydrogen-rich fuel gas with a higher mole fraction of active radicals such as H, O, and OH in the flame front has a higher reaction rate and heat release rate of key chemical reactions, so it can resist higher flame stretching deformation. With the increase of the equivalence ratio, the extinction strain rate indicates an upward trend. Turbulence not only improves the mixing of active groups and reactants, thereby improving the reaction, which increases the rate of key chemical reactions and heat release in the reaction area, but it also improves heat transfer of the flame from inside to outside, resulting in a lower internal temperature of the flame.
Key wordshydrogen-rich combustion    premixed flame    counterflow flame    extinction strain rate
收稿日期: 2022-10-31      出版日期: 2023-04-22
基金资助:国家科技重大专项项目(2019-III-0018-0062);国家自然科学基金项目(52176116)
通讯作者: 张扬,副教授,E-mail:yang-zhang@tsinghua.edu.cn     E-mail: yang-zhang@tsinghua.edu.cn
作者简介: 邹俊(1997-),男,博士研究生。
引用本文:   
邹俊, 李昭兴, 张海, 吕俊复, 张扬. 典型富氢燃料气预混火焰的熄灭特性[J]. 清华大学学报(自然科学版), 2023, 63(4): 585-593.
ZOU Jun, LI Zhaoxing, ZHANG Hai, Lü Junfu, ZHANG Yang. Extinction characteristics of premixed flames of typical hydrogen-rich fuel gas. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 585-593.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.25.009  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I4/585
  
  
  
  
  
  
  
  
  
[1] KOTHARI R, BUDDHI D, SAWHNEY R L. Comparison of environmental and economic aspects of various hydrogen production methods[J]. Renewable and Sustainable Energy Reviews, 2008, 12(2):553-563.
[2] 李克忠,张荣,毕继诚.煤和生物质共气化制备富氢气体的实验研究[J].燃料化学学报, 2010, 38(6):660-665. LI K Z, ZHANG R, BI J C. Experimental study on hydrogen-rich gas production by co-gasification of coal and biomass in a fluidized bed[J]. Journal of Fuel Chemistry and Technology, 2010, 38(6):660-665.(in Chinese)
[3] 李苏辉,张归华,吴玉新.面向未来燃气轮机的先进燃烧技术综述[J].清华大学学报(自然科学版), 2021, 61(12):1423-1437. LI S H, ZHANG G H, WU Y X. Advanced combustion technologies for future gas turbines[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12):1423-1437.(in Chinese)
[4] LIU H Y, QIAN W K, ZHU M, et al. Kinetics modeling on NOx emissions of a syngas turbine combustor using rich-burn, quick-mix, lean-burn combustion method[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(2):021005.
[5] GLARBORG P. Detailed kinetic mechanisms of pollutant formation in combustion processes[J]. Computer Aided Chemical Engineering, 2019, 45:603-645.
[6] WILLIAMS F A. Combustion theory[M]. Menlo Park, USA:Benjamin Cummings, 1985.
[7] 高聚忠.煤气化技术的应用与发展[J].洁净煤技术, 2013, 19(1):65-71. GAO J Z. Application and development of coal gasification technologies[J]. Clean Coal Technology, 2013, 19(1):65-71.(in Chinese)
[8] PETERS N. Turbulent combustion[M]. Cambridge, UK:Cambridge University Press, 2000.
[9] MARUTA K, YOSHIDA M, JU Y G, et al. Experimental study on methane-air premixed flame extinction at small stretch rates in microgravity[J]. Symposium (International) on Combustion, 1996, 26(1):1283-1289.
[10] YANG X H, WU Y X, ZHANG Y, et al. Reassessing the 2-D velocity boundary effect on the determination of extinction stretch rate and laminar flame speed using the counterflow flame configuration[J]. Combustion and Flame, 2021, 234:111630.
[11] VAGELOPOULOS C M, EGOLFOPOULOS F N. Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air[J]. Symposium (International) on Combustion, 1994, 25(1):1317-1323.
[12] SABELNIKOV V A, YU R, LIPATNIKOV A N. Thin reaction zones in highly turbulent medium[J]. International Journal of Heat and Mass Transfer, 2019, 128:1201-1205.
[13] REN Z Y, YANG H T, LU T F. Effects of small-scale turbulence on NOx formation in premixed flame fronts[J]. Fuel, 2014, 115:241-247.
[14] KITAJIMA A, UEDA T, MATSUO A, et al. Experimental investigation of the flame structure and extinction of turbulent counterflow non-premixed flames[J]. Symposium (International) on Combustion, 1996, 26(1):137-143.
[15] CORITON B, FRANK J H, GOMEZ A. Effects of strain rate, turbulence, reactant stoichiometry and heat losses on the interaction of turbulent premixed flames with stoichiometric counterflowing combustion products[J]. Combustion and Flame, 2013, 160(11):2442-2456.
[16] MIZOBUCHI Y, HIRAKAWA K. One-dimensional H2/O2 counterflow diffusion flame simulation for flamelet table construction at supercritical pressure[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2013, 56(5):239-252.
[17] ZHANG H, FAN R, WANG S F, et al. Extinction of lean near-limit methane/air flames at elevated pressures under normal-and reduced-gravity[J]. Proceedings of the Combustion Institute, 2011, 33(1):1171-1178.
[18] LEE E, CHOI C, HUH K Y. Application of the coherent flamelet model to counterflow turbulent premixed combustion and extinction[J]. Combustion Science and Technology, 1998, 138(1-6):1-25.
[19] LUTZ A E, KEE R J, GRCAR J F, et al. OPPDIF:A Fortran program for computing opposed-flow diffusion flames[R]. Livermore, USA:Sandia National Laboratories, 1997.
[20] 邹俊,杨协和,张扬,等.小尺度湍流对近极限非预混火焰熄灭极限的影响[J].燃烧科学与技术, 2022, 28(2):190-197. ZOU J, YANG X H, ZHANG Y, et al. Effect of small-scale turbulence on extinction limit of near-limit non-premixed flames[J]. Journal of Combustion Science and Technology, 2022, 28(2):190-197.(in Chinese)
[21] POPE S B. Turbulent flows[M]. Cambridge, UK:Cambridge University Press, 2000.
[22] KOLLA H, SWAMINATHAN N. Strained flamelets for turbulent premixed flames II:Laboratory flame results[J]. Combustion and Flame, 2010, 157(7):1274-1289.
[23] POPE S B. PDF methods for turbulent reactive flows[J]. Progress in Energy and Combustion Science, 1985, 11(2):119-192.
[24] KEE R J, RUPLY F M, MILLER J A. Chemkin-II:A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics[R]. Livermore, USA:Sandia National Laboratories, 1989.
[25] KEE R J, DIXON-LEWIS G, WARNATZ J, et al. A Fortran computer codepackage for the evaluation of gas-phase, multicomponent transport properties[R]. Livermore, USA:Sandia National Laboratories, 1986.
[26] EGOLFOPOULOS F N. Geometric and radiation effects on steady and unsteady strained laminar flames[J]. Symposium (International) on Combustion, 1994, 25(1):1375-1381.
[27] SMITH G P, TAO Y, WANG H.Foundational Fuel Chemistry Model Version 1.0[DB/OL].(2016-01-01)[2022-10-30]. http://nanoenergy.Stanford.edu/ffcm1.
[28] TANG Y, ZHUO J K, CUI W, et al. Non-premixed flame dynamics excited by flow fluctuations generated from dielectric barrier discharge plasma[J]. Combustion and Flame, 2019, 204:58-67.
[1] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[2] 吴韶华,张健. 湍流预混射流火焰直接模拟中入口条件的确定[J]. 清华大学学报(自然科学版), 2014, 54(6): 834-838.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn