Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (4): 642-648    DOI: 10.16511/j.cnki.qhdxxb.2023.25.010
  论文 本期目录 | 过刊浏览 | 高级检索 |
Gao-Yong湍流模型对边界层转捩的适用性研究
孙逸凡, 朱炜, 吴玉新, 祁海鹰
清华大学 能源与动力工程系, 北京 100084
The applicability study of Gao-Yong turbulence model to boundary layer transitions
SUN Yifan, ZHU Wei, WU Yuxin, QI Haiying
Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(4031 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 准确预测边界层转捩对深入理解湍流边界层发展和飞行器翼型优化工业应用等具有重要意义。为提升Gao-Yong (G-Y)湍流模型对平板边界层发展及转捩特性预测的准确性与适用性,该文提出了采用G-Y漂移位矢Reynolds数(ReT)表征当地湍流脉动强度的方法,建立实度系数(Cs)与ReT间的函数关系,解决G-Y湍流模型中Cs取值间断、分布离散的问题。基于开源OpenFOAM软件开发了改进G-Y湍流模型的求解器,对经典平板边界层和转捩实验开展计算流体力学(computational fluid dynamics,CFD)数值模拟并验证。研究结果表明,相比k-ω等传统雷诺平均(Reynolds averaged Naviers-Stokes,RANS)模型,改进后的G-Y湍流模型不仅能准确模拟边界层流动特征,还能合理预测边界层发展过程及转捩位置,准确性较高。结果表明,经过改进的G-Y湍流模型可进一步用于对边界层转捩特性的研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙逸凡
朱炜
吴玉新
祁海鹰
关键词 数值模拟G-Y湍流模型平板边界层转捩    
Abstract:[Objective] Transition is one of the most significant progressions in fluid mechanics. Accurate boundary layer transition prediction is also essential for a complete understanding of the production of turbulent boundary layers and the optimization of airfoil shapes for industrial applications. Turning turbulence models can accurately forecast transition by including an empirical turning criterion, a low Reynolds number viscous flow field characteristic, or an intermittency component for flow in the transition zone. As for the conventional turbulence models using Reynolds averaging method, such as the k-ε and the k-ω models, accurately forecasting this phenomenon is tough since the transition process is poorly characterized or described. [Methods] A functional correction relation for the G-Y model is suggested and put to the test in the calculations to increase its precision and usefulness for forecasting boundary layer development and transitional features across flat plates. The coefficient of substance Cs had the problem of discontinuous distribution and intermittent values in the original model. This work provided a correlation formula between Cs and the drift vector Reynolds number ReT to solve this problem. The drift vector Reynolds number ReT is built using the G-Y model's drift velocity and vector to describe the strength of local turbulent pulsations. With the aid of physical understanding, the Cs-ReT relationship is produced, resulting in a continuous distribution of the real degree coefficient with ReT variation, close to 0 at the location of mild turbulent pulsation and close to 2/3 at the location of strong turbulent pulsation. The turbulent viscosity is bound by the size of the real degree coefficient at the point of weak turbulent pulsation by solving the discrete distribution's initial problem in this manner. [Results] A solver for the modified G-Y turbulence model was made using the open-source program OpenFOAM. The CFD numerical simulations and validation were then performed for the tests involving the T3A and T3B transitions as well as the conventional flat plate boundary layer. The G-Y model's computational findings showed that: (1) The formula of Cs and ReT considerably increased the G-Y model's accuracy for boundary layer instances and gave the model the ability to forecast transitions. The G-Y model accurately predicted the transitional positions of the two boundary layer experiments, T3A and T3B. (2) Results of the modified G-Y model were in good agreement with the experimental and theoretical values for the distribution of surface friction coefficients before and after the turn. The relative error of the friction coefficients in the segment just entering turbulence was only 3%. (3) The G-Y model accurately replicated the transition from laminar to turbulent flow, which caused the velocity profile of the boundary layer to change from fullness to loss. [Conclusions] The findings show that the improved G-Y model has clear advantages over the established k-ω model in terms of its ability to accurately simulate the boundary layer transition process of a flat plate. This model can be used to investigate the properties of boundary layer transitions in greater depth.
Key wordsnumerical simulation    G-Y turbulence model    flat plate boundary layer    turbulent transition
收稿日期: 2022-11-04      出版日期: 2023-04-22
基金资助:国家科技重大专项(Y2019-I-0022-0021)
通讯作者: 祁海鹰,教授,E-mail:hyqi@tsinghua.edu.cn     E-mail: hyqi@tsinghua.edu.cn
作者简介: 孙逸凡(1999-),男,博士研究生。
引用本文:   
孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
SUN Yifan, ZHU Wei, WU Yuxin, QI Haiying. The applicability study of Gao-Yong turbulence model to boundary layer transitions. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 642-648.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.25.010  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I4/642
  
  
  
  
  
  
  
  
[1] ABU-GHANNAM B J, SHAW R. Natural transition of boundary layers:The effects of turbulence, pressure gradient, and flow history[J]. Journal of Mechanical Engineering Science, 1980, 22(5):213-228.
[2] WALKER G J, GOSTELOW J P. Effects of adverse pressure gradients on the nature and length of boundary layer transition[J]. Journal of Turbomachinery, 1990, 112(2):196-205.
[3] JIANG H D, MOORE J, MOORE J. Low Reynolds number one-equation turbulence modelling for prediction of transitional flows over a flat plate[C]//Proceedings of the 28th Aerospace Sciences Meeting. Reno, USA:AIAA, 1990:242.
[4] JONES W P, LAUNDER B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2):301-314.
[5] VANCOILLIE G, DICK E. A turbulence model for the numerical simulation of the transition zone in a boundary layer[J]. International Journal of Engineering Fluid Mechanics, 1988, 1(1):28-49.
[6] 高歌,熊焰.不可压湍流平均流与拟序流的各向异性模式理论及其数值验证[J].航空动力学报, 2000, 15(1):1-11. GAO G, XIONG Y. The united modeling theory for both of mean flow and coherent flow of incompressible turbulence[J]. Journal of Aerospace Power, 2000, 15(1):1-11.(in Chinese)
[7] GAO G, YONG Y. Partial-average-based equations of incompressible turbulent flow[J]. International Journal of Non-Linear Mechanics, 2004, 39(9):1407-1419.
[8] GAO G, XU J L. A partial average based study of compressible turbulent flows[J]. International Journal of Mechanic Systems Engineering, 2013, 3(1):20-35.
[9] 高歌. Gao-Yong理性湍流方程[J].推进技术, 2010, 31(6):666-675. GAO G. A review on the research development of Gao-Yong equations of turbulent flows[J]. Journal of Propulsion Technology, 2010, 31(6):666-675.(in Chinese)
[10] 陈广业,高歌,尹幸愉.使用GAO-YONG方程组对不可压转捩/湍流平板边界层的计算[J].航空动力学报, 2003, 18(1):197-202. CHEN G Y, GAO G, YIN X Y. The calculation of incompressible wall boundary layer using GAO-YONG turbulence equations[J]. Journal of Aerospace Power, 2003, 18(1):197-202.(in Chinese)
[11] 任鑫,高歌.使用GAO-YONG湍流方程组对翼型绕流的计算[J].航空学报, 2007, 28(Z1):S28-S34. REN X, GAO G. The calculation of airfoil flows using GAO-YONG turbulence equations[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(Z1):S28-S34.(in Chinese)
[12] RUMSEY C L, GATSKI T B. Summary of EASM turbulence models in CFL3D with validation test cases[R]. Virginia:Langley Research Center, 2003.
[13] COUPLAND J. Classic collection database[EB/OL].(1981-12-19)[2022-11-01]. http://cfd.mace.manchester.ac.uk/ercoftac/.
[14] WILCOX D C. Formulation of the k-w turbulence model revisited[J]. AIAA Journal, 2008, 46(11):2823-2838.
[15] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[3] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[4] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[5] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[6] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[7] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[8] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[9] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[10] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[11] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[12] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[13] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
[14] 韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
[15] 陈猛, 陈昭, 刘荣正, 刘兵, 邵友林, 唐亚平, 刘马林. 流化床-化学气相沉积颗粒包覆过程数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(10): 1645-1659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn