Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (4): 612-622    DOI: 10.16511/j.cnki.qhdxxb.2023.25.011
  论文 本期目录 | 过刊浏览 | 高级检索 |
预测NOx排放的化学反应器网络自动生成方法
高桥东1,2, 雷福林1,2, 张哲巅1,2
1. 中国科学院 工程热物理研究所, 先进能源动力重点实验室, 北京 100190;
2. 中国科学院大学 工程科学学院, 北京 100049
Automatic generation method of a chemical reactor network for predicting NOx emissions
GAO Qiaodong1,2, LEI Fulin1,2, ZHANG Zhedian1,2
1. Key Laboratory of Advanced Energy and Power, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(6244 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 计算流体力学-化学反应器网络(computational fluid dynamics-chemical reactor network,CFD-CRN)方法是一种预测燃烧室排放的手段,如何快速构建合理的CRN是一个需要解决的问题。为实现CRN的自动划分、构建和求解,基于Python语言开发了CRN自动生成程序并集成了Cantera求解器;对贫预混燃烧器和微混模型燃烧器的NOx排放进行预测,并与实验数据对比验证,结果表明:给定划分标准,利用CRN自动生成程序可以读取CFD数据,实现快速有效地构建和求解CRN;利用CFD-CRN方法预测NOx排放,应考虑散热损失以提高预测准确度;在划分标准合理的前提下,减少CFD计算的网格数和CRN的反应器数量依然能保证NOx预测精度;同一CRN模版对不同工况有一定的适用性,可以用于预测相近工况的NOx排放。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高桥东
雷福林
张哲巅
关键词 计算流体力学化学反应器网络生成方法预混燃烧NOx    
Abstract:[Objective] In the design and development of combustion chambers, fast and reliable emission prediction tools are needed. One of the most extensively utilized technologies today is computational fluid dynamics (CFD) combined with a chemical reactor network (CRN). The manual division of the chemical reactor network is complex, and the calculation of chemical reactor parameters is rough. It can quickly and efficiently divide, build, and solve the CRN to estimate NOx emissions based on the CFD calculation results by developing an automatic generation method for the chemical reactor network. [Methods] The program for the automatic generation of CRN is developed based on Python language, and Cantera is integrated to solve the CRN. The CFD results are obtained by numerically simulating six working conditions of a lean premixed burner and five working conditions of a micromix burner. The CRN automatic generation program divides the combustion chamber domain into different reaction regions based on the division criteria of temperature field, velocity field, and geometric parameters. Meanwhile, when the cells are clustered, the chemical reactor parameters and mass flow rates between the chemical reactors are calculated. The different regions are replaced by reactors, such as the perfectly stirred reactor, and linked by flow controllers. The NOx emissions are obtained by solving the CRN through Cantera and compared with the experimental values. [Results] The parameters of the CRN could be accurately calculated by post-processing the CFD results with the CRN automatic generation program. Under different conditions in the same combustion chamber, the cells could be classified, and the corresponding CRN structure could be generated again by changing the division criteria. The temperature and pressure calculated by the volume-weighted average method and the mass-weighted average method differed in some reactors. However, the NOx values predicted by the two methods were basically identical. The CFD-CRN method predicted NOx emissions more accurately than the Fluent NOx post-processing method. CFD-CRN had a maximum forecast error of 32%, while Fluent NOx post-processing had a maximum prediction error of 96%. The greatest errors in the NOx forecast results of CRN models with different CFD grid numbers and reactor numbers were 5% and 2%, respectively, based on the premise of selecting appropriate division criteria to reasonably build a CRN. The CRN template could be used to predict the NOx emission under nearby working conditions within the acceptable error range. In the lean premixed burner, when heat loss was allocated to the wall area, the NOx values were generally higher than when it was allocated to different reactors according to volume weight. However, the predicted results of the two allocation methods were opposite in the micromix burner. [Conclusions] The CRN automatic generation program may automate the CRN’s division, construction, and solution. Taken temperature, velocity and geometric parameters as the criteria, it can generate well-structured CRN. With fewer grids and reactors, the CRN model can estimate NOx emission accurately. When the combustion temperature is high, considering heat loss and distributing it to different chemical reactors can improve the accuracy of the NOx prediction substantially. The same CRN model may be reused again to accurately predict NOx emissions under similar working conditions.
Key wordscomputational fluid dynamics    chemical reactor network    generation method    premixed combustion    NOx
收稿日期: 2022-10-30      出版日期: 2023-04-22
基金资助:国家科技重大专项(Y2019-I-0022-0021)
通讯作者: 雷福林,研究员,E-mail:leifulin@iet.cn     E-mail: leifulin@iet.cn
作者简介: 高桥东(1997-),男,硕士研究生。
引用本文:   
高桥东, 雷福林, 张哲巅. 预测NOx排放的化学反应器网络自动生成方法[J]. 清华大学学报(自然科学版), 2023, 63(4): 612-622.
GAO Qiaodong, LEI Fulin, ZHANG Zhedian. Automatic generation method of a chemical reactor network for predicting NOx emissions. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 612-622.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.25.011  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I4/612
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 李朋玉.低排放燃烧室燃烧性能和污染排放预测模型研究[D].南京:南京航空航天大学, 2013. LI P Y. The study of combustion performance and pollution emissions of low emission combustor using prediction model[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013.(in Chinese)
[2] KHODAYARI H, OMMI F, SABOOHI Z. A review on the applications of the chemical reactor network approach on the prediction of pollutant emissions[J]. Aircraft Engineering and Aerospace Technology, 2020, 92(4):551-570.
[3] NGUYEN T H, PARK J, JUNG S, et al. A numerical study on NOx formation behavior in a lean-premixed gas turbine combustor using CFD-CRN method[J]. Journal of Mechanical Science and Technology, 2019, 33(10):5051-5060.
[4] 曹志博,肖隐利,宋文艳.基于化学反应器网络模型法的预混气组分对NOx反应路径影响研究[J].推进技术, 2022, 43(3):303-313. CAO Z B, XIAO Y L, SONG W Y. Effects of premixed gas components on NOx pathways based on chemical reactor network model[J]. Journal of Propulsion Technology, 2022, 43(3):303-313.(in Chinese)
[5] LEE D, PARK J, JIN J, et al. A simulation for prediction of nitrogen oxide emissions in lean premixed combustor[J]. Journal of Mechanical Science and Technology, 2011, 25(7):1871-1878.
[6] 耿俊杰,田园,孙逸凡,等.基于化学反应器网络方法的燃气轮机燃烧室NOx排放研究[J/OL].中国电机工程学报.(2022-08-29)[2022-10-30]. http://kns.cnki.net/kcms/detail/11.2107.TM.20220826.1746.018.html. GENG J J, TIAN Y, SUN Y F, et al. Investigation on NOx emission characteristics of gas turbine combustor based on chemical reactor network method[J/OL]. Proceedings of the CSEE.(2022-08-29)[2022-10-30]. http://kns.cnki.net/kcms/detail/11.2107.TM.20220826.1746.018.html.(in Chinese)
[7] COLORADO A, MCDONELL V. Reactor network analysis to assess fuel composition effects on NOx emissions from a recuperated gas turbine[C]//Proceedings of ASME Turbo Expo 2014:Turbine Technical Conference and Exposition. Düsseldorf, Germany:ASME, 2014:V04BT04A030.
[8] NOVOSSELOV I V, MALTE P C, YUAN S, et al. Chemical reactor network application to emissions prediction for industial DLE gas turbine[C]//Proceedings of the ASME Turbo Expo 2006:Power for Land, Sea, and Air. Barcelona, Spain:ASME, 2006:221-235.
[9] 胡长松.基于网络法的燃气轮机燃烧过程计算与分析[D].北京:清华大学, 2008. HU C S. Network based simulation and analysis of combustion processes in gas turbines[D]. Beijing:Tsinghua University, 2008.(in Chinese)
[10] 李亚清,刘勇,郭泽颖,等.大分子碳氢燃料预混射流火焰的化学反应器模拟[J].燃烧科学与技术, 2021, 27(1):60-66. LI Y Q, LIU Y, GUO Z Y, et al. Chemical reactor simulation of macromolecule hydrocarbon fuel premixed jet flame[J]. Journal of Combustion Science and Technology, 2021, 27(1):60-66.(in Chinese)
[11] 母滨.贫预混燃烧室NOx排放的化学反应器网络模型数值研究[D].北京:中国科学院大学(中国科学院工程热物理研究所), 2019. MU B. Numerical investigation of NOx emission of lean premixed combustor using chemical reactor network model[D]. Beijing:University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, Chinese Academy of Sciences), 2019.(in Chinese)
[12] COLORADO A, MCDONELL V. Emissions and stability performance of a low-swirl burner operated on simulated biogas fuels in a boiler environment[J]. Applied Thermal Engineering, 2018, 130:1507-1519.
[13] KHODAYARI H, OMMI F, SABOOHI Z. Multi-objective optimization of a lean premixed laboratory combustor through CFD-CRN approach[J]. Thermal Science and Engineering Progress, 2021, 25:101014.
[14] BENEDETTO D, FALCITELLI M, PASINI S, et al. Simulation of NOx formation in glass melting furnaces by an integrated computational approach:CFD+reactor network analysis[J]. Computer Aided Chemical Engineering, 2000, 8:421-426.
[15] FALCITELLI M, PASINI S, TOGNOTTI L. Modelling practical combustion systems and predicting NOx emissions with an integrated CFD based approach[J]. Computers&Chemical Engineering, 2002, 26(9):1171-1183.
[16] MONAGHAN R F D, TAHIR R, CUOCI A, et al. Detailed multi-dimensional study of pollutant formation in a methane diffusion flame[J]. Energy&Fuels, 2012, 26(3):1598-1611.
[17] CUOCI A, FRASSOLDATI A, STAGNI A, et al. Numerical modeling of NOx formation in turbulent flames using a kinetic post-processing technique[J]. Energy&Fuels, 2013, 27(2):1104-1122.
[18] SAMPAT R. Automatic generation of chemical reactor networks for combustion simulations[D]. Delft:Delft University of Technology, 2018.
[19] LIU X W, SHAO W W, TIAN Y, et al. Investigation of H2/CH4-air flame characteristics of a micromix model burner at atmosphere pressure condition[C]//ASME Turbo Expo 2018:Turbomachinery Technical Conference and Exposition. Oslo, Norway:ASME, 2018:V04BT04A015.
[1] 扈学超, 毕笑天, 刘策, 邵卫卫. 氢燃料微预混火焰燃烧不稳定性实验研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 572-584.
[2] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[3] 田园, 耿俊杰, 孙逸凡, 祁海鹰. 天然气径向分级燃烧室低NOx排放的优化研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 660-669.
[4] 冯瑞, 刘宇, 张章, 何青松, 吴卓, 滕海山, 贾贺. 火箭整流罩半罩再入过程连续流区气动特性数值研究[J]. 清华大学学报(自然科学版), 2023, 63(3): 414-422.
[5] 李苏辉, 张归华, 吴玉新. 面向未来燃气轮机的先进燃烧技术综述[J]. 清华大学学报(自然科学版), 2021, 61(12): 1423-1437.
[6] 薛春辉, 董玉杰. 自然循环熔盐球床堆中间换热器的优化设计[J]. 清华大学学报(自然科学版), 2018, 58(5): 445-449.
[7] 黄首清, 索双富, 李永健, 杨杰, 刘守文, 王玉明. 基于2维叉排管束模型的刷式密封介质流动计算[J]. 清华大学学报(自然科学版), 2016, 56(2): 160-166.
[8] 曹欣荣,王婕,王荣品,张先文,唐劲天. 不同边界条件对主动脉血流仿真结果的影响[J]. 清华大学学报(自然科学版), 2014, 54(6): 700-705.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn