Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (8): 1213-1218    DOI: 10.16511/j.cnki.qhdxxb.2023.25.015
  论文 本期目录 | 过刊浏览 | 高级检索 |
高温球床辐射传热中的机器学习模型
吴浩, 牛风雷
华北电力大学 核科学与工程学院, 北京 102206
Machine learning model of radiation heat transfer in the high-temperature nuclear pebble bed
WU Hao, NIU Fenglei
School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
全文: PDF(5608 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 在高温气冷堆(high-temperature gas-cooled reactor,HTGR)堆芯球床中,燃料球间的辐射换热是重要的传热模式,与堆芯固有安全特性密切相关。该文利用机器学习方法提出了球床颗粒间辐射角系数智能预测方案,其中基础计算模型基于角系数显式解析表达式,合理描述了球床热辐射特性随球心距变化规律和周围颗粒球平均阻挡作用,用于快速计算球床堆中辐射角系数的核心主导部分。利用高温气冷堆示范项目(HTR-PM)球床堆积结构和光线追踪方法,建立了高温堆球床高精度角系数大数据集,共包含1.66×107条角系数工况,覆盖了球床各种局部结构。利用大数据训练后的梯度提升决策树模型有效提升了角系数预测精度,综合基础计算模型后角系数回归系数超过0.999。该文成果为高温气冷堆球流传热研究、堆芯优化和热工流体分析提供了高效的辐射传热计算方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴浩
牛风雷
关键词 高温气冷堆球床热辐射颗粒尺度角系数梯度提升决策树机器学习    
Abstract:[Objective] In high-temperature gas-cooled reactors (HTGR), experimental results show that thermal radiation plays a significant role in the heat transfer process and it is highly related to the inherent safety of the nuclear reactor. The HTGR core is a dense pebble bed of single-sized fuel spheres. It is a fundamental and very challenging task to discuss the particle-scale radiative heat transfer in a pebble bed. In this study, using a machine learning approach, an artificial intelligent regression model is developed and trained on a large dataset to predict the obstructed view factor between fuel spheres in a nuclear pebble bed.[Methods] Comparing the numerical and experimental results, the radiative transfer equation (RTE) method significantly underestimates the radiative heat flux in dense pebble beds. The Lagrangian discrete element method (DEM) is often applied in pebble flow simulations. Thus, particle-particle interactions in the DEM framework are used in this present study. The view factor in the base model is calculated using an explicit analytical expression with the elliptic integral function. The model reasonably describes the effect of the distance between spheres and the average obstruction contribution of the surroundings. The obstruction function is proposed by fitting the numerical results. The analytical base model is used to efficiently obtain the dominant parts of the view factor. Furthermore, for the machine learning model, a large dataset of the view factor is established by the particle-scale DEM packing of the HTR-PM, an HTGR demonstration plant, and the thermal ray tracing method. Following preprocessing, the dataset contains a total of 16.6 million records under various conditions in a pebble bed. The gradient boosting decision tree (GBDT) model is used to learn the rules for view factor regression. The model input is the Cartesian coordinates of the sphere and its surrounding ones. The model output is the difference between the ground truth of the view factor and the analytical base model's prediction. 80% of the dataset is used for training, and 20% is left for validation. The mean square error (MSE) and coefficient of determination are selected to evaluate the machine learning model. The GBDT model was trained using the open-source software LightGBM, and the hyperparameter tuning was performed in the FLAML platform to find the best model parameters.[Results] The MSE of the trained machine learning model decreases gradually as the model complexity increases. The analytical base model provides a generally satisfactory forecast of the view factor in the pebble bed, and the gradient boosting decision tree model trained by big data greatly improved the prediction accuracy. With the base model, the coefficients of determination of the trained machine learning model are greater than 0.999.[Conclusions] This study presents an efficient artificial intelligent model for obstructed view factor prediction for heat transfer research, parameter optimization, and thermal hydraulic analysis of the nuclear pebble bed. The trained machine learning model can also be used in effective thermal conductivity analysis, and it is feasible to be coupled with the CFD-DEM simulations of conduction and heat convection in large-scale nuclear pebble beds.
Key wordshigh-temperature gas-cooled reactor    pebble bed    thermal radiation    particle scale    obstructed view factor    gradient boosting decision tree    machine learning
收稿日期: 2022-12-02      出版日期: 2023-07-22
基金资助:国家自然科学基金资助项目(12105101,12027813);核反应堆系统设计技术重点实验室基金资助项目(KFKT-05-FW-HT-20220010)
作者简介: 吴浩(1989-),男,讲师。E-mail:wuhao@ncepu.edu.cn
引用本文:   
吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8): 1213-1218.
WU Hao, NIU Fenglei. Machine learning model of radiation heat transfer in the high-temperature nuclear pebble bed. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1213-1218.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.25.015  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I8/1213
  
  
  
  
  
  
  
  
[1] 张作义, 吴宗鑫, 王大中, 等. 我国高温气冷堆发展战略研究[J]. 中国工程科学, 2019, 21(1):12-19. ANG Z Y, WU Z X, WANG D Z, et al. Development strategy of high temperature gas cooled reactor in China[J]. Strategic Study of CAE, 2019, 21(1):12-19. (in Chinese)
[2] 姜胜耀, 桂南, 杨星团, 等. 球床式高温气冷堆球流及球床辐射的理论与实验研究进展[J]. 原子能科学技术, 2019, 53(10):1918-1929. JIANG S Y, GUI N, YANG X T, et al. Theoretical and experimental research progress on pebble flow and effective thermal conductivity in pebble-type HTGR[J]. Atomic Energy Science and Technology, 2019, 53(10):1918-1929. (in Chinese)
[3] PENG Z B, DOROODCHI E, MOGHTADERI B. Heat transfer modelling in discrete element method (DEM)-based simulations of thermal processes:Theory and model development[J]. Progress in Energy and Combustion Science, 2020, 79:100847.
[4] ROUSSEAU P G, DU TOIT C G, VAN ANTWERPEN W, et al. Separate effects tests to determine the effective thermal conductivity in the PBMR HTTU test facility[J]. Nuclear Engineering and Design, 2014, 271:444-458.
[5] WU Y Y, REN C, YANG X T, et al. Repeatable experimental measurements of effective thermal diffusivity and conductivity of pebble bed under vacuum and helium conditions[J]. International Journal of Heat and Mass Transfer, 2019, 141:204-216.
[6] 任成, 杨星团, 李聪新, 等. 高温堆球床等效导热系数测量实验加热系统设计及可行性验证[J]. 清华大学学报(自然科学版), 2014, 54(8):1068-1072. REN C, YANG X T, LI C X, et al. Heating system design and validation for the pebble bed effective thermal conductivity experiment in a high temperature gas-cooled reactor[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(8):1068-1072. (in Chinese)
[7] GUSAROV A V. Statistical approach to radiative transfer in the heterogeneous media of thin-wall morphology-II:Applications[J]. Journal of Heat Transfer, 2019, 141(1):012701.
[8] GUI N, HUANG X L, YANG X T, et al. HTR-PM-based 3D pebble flow simulation on the effects of base angle, recirculation mode and coefficient of friction[J]. Annals of Nuclear Energy, 2020, 143:107442.
[9] MEHRABIAN R, SHIEHNEJADHESAR A, SCHARLER R, et al. Multi-physics modelling of packed bed biomass combustion[J]. Fuel, 2014, 122:164-178.
[10] ZHOU Z Y, YU A B, ZULLI P. Particle scale study of heat transfer in packed and bubbling fluidized beds[J]. AIChE Journal, 2009, 55(4):868-884.
[11] JOHNSON E F, TARI I, BAKER D. Radiative heat transfer in the discrete element method using distance based approximations[J]. Powder Technology, 2021, 380:164-182.
[12] KE G L, MENG Q, FINLEY T, et al. LightGBM:A highly efficient gradient boosting decision tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA:ACM, 2017:3149-3157.
[13] HUGHES M T, KINI G, GARIMELLA S. Status, challenges, and potential for machine learning in understanding and applying heat transfer phenomena[J]. Journal of Heat Transfer, 2021, 143(12):120802.
[14] GAO Z Y, SHI L. Thermal hydraulic calculation of the HTR-10 for the initial and equilibrium core[J]. Nuclear Engineering and Design, 2002, 218(1-3):51-64.
[15] WANG C, WU Q, WEIMER M, et al. FLAML:A fast and lightweight AutoML library[C]//Proceedings of 4th Machine Learning and Systems Conference. San Jose, USA, 2021:434-447.
[16] ZHANG Z Y, DONG Y J, LI F, et al. The Shandong Shidao Bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant:An engineering and technological innovation[J]. Engineering, 2016, 2(1):112-118.
[17] HOWELL J R, DAUN K J. The past and future of the Monte Carlo method in thermal radiation transfer[J]. Journal of Heat Transfer, 2021, 143(10):100801.
[1] 苏阳, 李晓伟, 吴莘馨, 张作义. 核反应堆蒸汽发生器两相流不稳定性现象规律、研究方法及应用[J]. 清华大学学报(自然科学版), 2023, 63(8): 1184-1203.
[2] 陈璞, 童节娟, 刘涛, 张勤昭, 王宏. 高温气冷堆主氦风机预防性维修策略研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1219-1225.
[3] 曲新鹤, 胡庆祥, 倪航, 彭威, 赵钢, 王捷. 基于高温气冷堆的制氢耦合炼钢系统初步设计和能量分析[J]. 清华大学学报(自然科学版), 2023, 63(8): 1236-1245.
[4] 曹军文, 覃祥富, 胡轶坤, 张文强, 于波, 张佑杰. 高温气冷堆耦合高温电解规模化制氢系统仿真[J]. 清华大学学报(自然科学版), 2023, 63(8): 1246-1256.
[5] 代鑫, 黄弘, 汲欣愉, 王巍. 基于机器学习的城市暴雨内涝时空快速预测模型[J]. 清华大学学报(自然科学版), 2023, 63(6): 865-873.
[6] 任建强, 崔亚鹏, 倪顺江. 基于机器学习的新冠肺炎疫情趋势预测方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 1003-1011.
[7] 安健, 陈宇轩, 苏星宇, 周华, 任祝寅. 机器学习在湍流燃烧及发动机中的应用与展望[J]. 清华大学学报(自然科学版), 2023, 63(4): 462-472.
[8] 操凯, 李亚运, 付明, 郭贤, 刘小勇, 宋舆涵. 基于暖体假人的消防员降温背心热传递及降温性能分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1548-1557.
[9] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[10] 赵祺铭, 毕可鑫, 邱彤. 基于机器学习的乙烯裂解过程模型比较与集成[J]. 清华大学学报(自然科学版), 2022, 62(9): 1450-1457.
[11] 曹来成, 李运涛, 吴蓉, 郭显, 冯涛. 多密钥隐私保护决策树评估方案[J]. 清华大学学报(自然科学版), 2022, 62(5): 862-870.
[12] 王豪杰, 马子轩, 郑立言, 王元炜, 王飞, 翟季冬. 面向新一代神威超级计算机的高效内存分配器[J]. 清华大学学报(自然科学版), 2022, 62(5): 943-951.
[13] 陆思聪, 李春文. 基于场景与话题的聊天型人机会话系统[J]. 清华大学学报(自然科学版), 2022, 62(5): 952-958.
[14] 李维, 李城龙, 杨家海. As-Stream:一种针对波动数据流的算子智能并行化策略[J]. 清华大学学报(自然科学版), 2022, 62(12): 1851-1863.
[15] 郝予琛, 王金华, 王海涛, 刘兵, 李悦. HTR-PM600新燃料贮存容器跌落冲击安全性能[J]. 清华大学学报(自然科学版), 2022, 62(10): 1668-1674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn