Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (4): 681-690    DOI: 10.16511/j.cnki.qhdxxb.2023.25.019
  论文 本期目录 | 过刊浏览 | 高级检索 |
基于神经网络的燃烧室壁面冷效预测方法
刘江帆1, 葛冰2, 李珊珊1, 芦翔2
1. 中国联合重型燃气轮机技术有限公司, 北京 100016;
2. 上海交通大学 动力机械及工程教育部重点实验室, 上海 200240
A prediction method for wall cooling efficiency of combustor chamber based on neural network
LIU Jiangfan1, GE Bing2, LI Shanshan1, LU Xiang2
1. China United Gas Turbine Technology Co., Ltd., Beijing 100016, China;
2. Key Laboratory of Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(10330 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 现代重型燃气轮机燃烧室的研发过程中,产生了大量的数值模拟和试验数据。其中,燃烧室火焰筒采用了先进发散冷却技术。该技术中,壁面冷效受发散孔型、主流/冷气压损等参数影响,难以建立基于理论模型和经验关联式的方法进行回归预测。针对工业研发产生的壁面冷效数据集,该文提出了基于人工特征选择、小批量化和归一化的数据预处理技术,建立反向传播(back propagation,BP)神经网络和径向基核函数(radial basis function,RBF)神经网络2种优化的神经网络模型,并通过交叉验证与网格搜索对算法模型进行超参数寻优,最终实现燃烧室壁面冷效的高精度场重建和高精度预测,场重建精度达90%,预测精度达85%,满足了工业燃烧室设计迭代中的实际工程需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘江帆
葛冰
李珊珊
芦翔
关键词 燃气轮机发散冷却壁面冷效神经网络性能预测    
Abstract:[Objective] The effusion cooling technique is applied to hot sections in the modern heavy-duty gas turbine combustor, for example, the liner provides efficient protection from high-temperature gas using a small amount of cooling air. However, establishing a theoretical model or empirical correlations for regression and prediction of wall cooling efficiency is difficult. Because it is affected by many factors, including cooling hole type, patterns, and other flow parameters. The prediction methods based on computational fluid dynamics (CFD) techniques also have the disadvantages of long-term consumption and resource occupation. This paper proposes a prediction method based on artificial neural networks, namely back propagation (BP) and radial basis function (RBF) networks, that reach high accuracy for field reconstruction and cooling efficiency prediction. [Methods] This study collects simulation data from the design process of an industrial combustor and analyzed all dimensions of the wall adiabatic film cooling efficiency data set from the working conditions. Artificial feature selection, mini-batch, and normalization are used to preprocess the data. Important feature regions A and B are manually extracted by calculating the standard deviations of the cooling efficiency matrix considering different cooling air pressure loss conditions combined with CFD analysis. Then, the training set, the validation set, and the test set are divided based on cross-validation. For the field reconstruction, the BP network and the RBF network are selected. For its fast convergence and high precision, the BP network adopts the L-M algorithm. For the prediction, the BP network and generalized regression neural network (GRNN) are selected. The BP network adopts a Bayesian regularization algorithm to avoid overfitting. The GRNN network outperforms the RBF network for prediction and also takes less time for grid searching. For regression, mean square error (mse) and network prediction accuracy (accu) are defined to measure variance and deviation, respectively. [Results] The results showed that: 1) Through artificial feature selection and mini-batch, the samples in region A were compressed by ten times while perfectly extracting cooling efficiency characteristics. 2) For the field reconstruction, under the non-reactive condition 3, the field reconstruction accuracy of the optimized BP and RBF networks reached 92.2% and 95.5%, respectively. Under the reactive condition 10, the same networks reached 90.5% and 92.0% respectively. Compared with the BP network, the RBF network had better global approximation ability than the BP network. 3) For the prediction, under the reactive condition 10, the prediction accuracy of the BP and GRNN networks reached 88.3% and 86.8%, respectively, both lower than the field reconstruction accuracies. [Conclusions] The rapid field reconstruction and high prediction for wall adiabatic film cooling efficiency are realized by proposing a universal data preprocessing technique for the combustor wall cooling efficiency data set and an optimization technique for the BP and RBF networks. In summary, the field reconstruction accuracy reaches above 90%, and the prediction accuracy reaches above 85%, meeting the actual engineering requirements in the modern industrial gas turbine combustor design.
Key wordsgas turbine    effusion cooling    wall cooling efficiency    neural network    performance prediction
收稿日期: 2022-11-12      出版日期: 2023-04-22
基金资助:航空发动机及燃气轮机重大专项(Y2019-I-0022-0021)
作者简介: 刘江帆(1990-),男,工程师,E-mail:13146597262@163.com
引用本文:   
刘江帆, 葛冰, 李珊珊, 芦翔. 基于神经网络的燃烧室壁面冷效预测方法[J]. 清华大学学报(自然科学版), 2023, 63(4): 681-690.
LIU Jiangfan, GE Bing, LI Shanshan, LU Xiang. A prediction method for wall cooling efficiency of combustor chamber based on neural network. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 681-690.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.25.019  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I4/681
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] KREWINKEL R. A review of gas turbine effusion cooling studies[J]. International Journal of Heat and Mass Transfer, 2013, 66:706-722.
[2] 焦李成,杨淑媛,刘芳,等.神经网络七十年:回顾与展望[J].计算机学报, 2016, 39(8):1697-1716. JIAO L C, YANG S Y, LIU F, et al. Seventy years beyond neural networks:Retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(8):1697-1716.(in Chinese)
[3] 丛爽.面向MATLAB工具箱的神经网络理论与应用:3版[M].合肥:中国科学技术大学出版社, 2009. CONG S. Neural network theory and applications with MATLAB toolboxes:3rd ed[M]. Hefei:University of Science and Technology of China Press, 2009.(in Chinese)
[4] SUN J, ZHANG W G, NING D F. Fault-diagnosis system of flight control system based on neural network[J].Measurement&Control Technology, 2008, 27(5):65-67, 83.
[5] 何长虹,黄全义,申世飞,等.基于BP神经网络的森林可燃物负荷量估测[J].清华大学学报(自然科学版), 2011, 51(2):230-233. HE C H, HUANG Q Y, SHEN S F, et al. Forest fuel loading estimates based on a back propagation neutral network[J]. Journal of Tsinghua University (Science&Technology), 2011, 51(2):230-233.(in Chinese)
[6] 呙润华,苏婷婷,马晓伟. BP神经网络联合模板匹配的车牌识别系统[J].清华大学学报(自然科学版), 2013, 53(9):1221-1226. GUO R H, SU T T, MA X W. License plate recognition system using a BP neural network and template matching[J]. Journal of Tsinghua University (Science&Technology), 2013, 53(9):1221-1226.(in Chinese)
[7] 杨淑娥,黄礼.基于BP神经网络的上市公司财务预警模型[J].系统工程理论与实践, 2005, 25(1):12-18. YANG S E, HUANG L. Financial crisis warning model based on BP neural network[J]. Systems Engineering-Theory&Practice, 2005, 25(1):12-18.(in Chinese)
[8] ASGARI H, CHEN X Q. Gas turbines modeling, simulation, and control[M]. Boca Raton:CRC Press, 2015.
[9] WERBOS P J. The roots of backpropagation:From ordered derivatives to neural networks and political forecasting[J]. Neural Networks, 1996, 9(3):543-544.
[10] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536.
[11] FUNAHASHI K I. On the approximate realization of continuous mappings by neural networks[J]. Neural Networks, 1989, 2(3):183-192.
[12] CYBENKO G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of Control, Signals and Systems, 1989, 2(4):303-314.
[13] BROOMHEAD D S, LOWE D. Radial basis functions, multi-variable functional interpolation and adaptive networks[R]. Great Malvern:Royal Signals and Radar Estab-lishment, 1988.
[14] PARK J, SANDBERG I W. Universal approximation using radial-basis-function networks[J]. Neural Computation, 1991, 3(2):246-257.
[1] 张雪芹, 刘岗, 王智能, 罗飞, 吴建华. 基于多特征融合和深度学习的微观扩散预测[J]. 清华大学学报(自然科学版), 2024, 64(4): 688-699.
[2] 张名芳, 李桂林, 吴初娜, 王力, 佟良昊. 基于轻量型空间特征编码网络的驾驶人注视区域估计算法[J]. 清华大学学报(自然科学版), 2024, 64(1): 44-54.
[3] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[4] 杨波, 邱雷, 吴书. 异质图神经网络协同过滤模型[J]. 清华大学学报(自然科学版), 2023, 63(9): 1339-1349.
[5] 付雯, 温浩, 黄俊珲, 孙镔轩, 陈嘉杰, 陈武, 冯跃, 段星光. 基于非线性动力学模型补偿的水下机械臂自适应滑模控制[J]. 清华大学学报(自然科学版), 2023, 63(7): 1068-1077.
[6] 黄贲, 康飞, 唐玉. 基于目标检测的混凝土坝裂缝实时检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1078-1086.
[7] 陈波, 张华, 陈永灿, 李永龙, 熊劲松. 基于特征增强的水工结构裂缝语义分割方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1135-1143.
[8] 代鑫, 黄弘, 汲欣愉, 王巍. 基于机器学习的城市暴雨内涝时空快速预测模型[J]. 清华大学学报(自然科学版), 2023, 63(6): 865-873.
[9] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[10] 杜晓闯, 梁漫春, 黎岢, 俞彦成, 刘欣, 汪向伟, 王汝栋, 张国杰, 付起. 基于卷积神经网络的γ放射性核素识别方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 980-986.
[11] 安健, 陈宇轩, 苏星宇, 周华, 任祝寅. 机器学习在湍流燃烧及发动机中的应用与展望[J]. 清华大学学报(自然科学版), 2023, 63(4): 462-472.
[12] 张归华, 吴玉新, 吴家豪, 张扬, 张海. 火焰面方法进展及在燃机燃烧室模拟中的挑战[J]. 清华大学学报(自然科学版), 2023, 63(4): 505-520.
[13] 扈学超, 毕笑天, 刘策, 邵卫卫. 氢燃料微预混火焰燃烧不稳定性实验研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 572-584.
[14] 刘贵军, 刘佳悦, 张扬, 吴玉新. 湍流热伴流中氢气与乙炔射流自着火实验[J]. 清华大学学报(自然科学版), 2023, 63(4): 594-602.
[15] 孙继昊, 宋颖, 石云姣, 赵宁波, 郑洪涛. 天然气同轴分级燃烧室污染物生成及预测[J]. 清华大学学报(自然科学版), 2023, 63(4): 649-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn