Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (8): 1246-1256    DOI: 10.16511/j.cnki.qhdxxb.2023.25.020
  论文 本期目录 | 过刊浏览 | 高级检索 |
高温气冷堆耦合高温电解规模化制氢系统仿真
曹军文, 覃祥富, 胡轶坤, 张文强, 于波, 张佑杰
清华大学 核能与新能源技术研究院, 北京 100084
Simulation of a high-temperature gas-cooled reactor coupled high-temperature electrolytic large-scale hydrogen production system
CAO Junwen, QIN Xiangfu, HU Yikun, ZHANG Wenqiang, YU Bo, ZHANG Youjie
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(8635 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 随着能源体系变革,氢能在能源系统中发挥着越来越重要的作用,绿色化、低碳化制氢技术日益受到关注。高温气冷堆耦合高温电解制氢技术是一种具有潜力的零碳排大规模绿氢制备技术。该文提出了热功率为250MW,氦气出口温度分别为750和950℃的高温气冷堆与高温电解制氢系统的耦合策略,建立了全流程ASPEN仿真模型,并分析了系统热电比对制氢产能和能耗的影响规律,据此评估并探讨了制氢成本及成本降低策略。结果表明:750和950℃制氢系统的最大氢产能分别为28108和35160m3/h。在最大氢产能下,750℃制氢系统的耗电量和耗热量分别为3.73和0.49kW·h/m3,总能量转化效率为40.1%;950℃制氢系统的耗电量和耗热量分别为3.11和0.56kW·h/m3,总能量转化效率为50.2%。提升电解制氢模块的电流密度可显著降低制氢成本,电解模块阳极耦合制备油品等高附加值化工品一方面可以分摊制氢成本,另一方面可以拓展核能高温电解应用场景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹军文
覃祥富
胡轶坤
张文强
于波
张佑杰
关键词 高温气冷堆高温电解制氢能耗制氢成本分析    
Abstract:[Objective] The green energy system revolution is accelerating, and hydrogen plays an increasingly important role in energy systems. However, the "green hydrogen production technique" with low carbon emissions evokes increasing concern.[Methods] This article suggests using a high-temperature electrolysis hydrogen production system coupled with a high-temperature gas-cooled reactor (HTGR), which has a heat power of 250 MW and a helium exit temperature of 750℃ or 950℃. An ASPEN simulation module of the full hydrogen production process was constructed, and the effects of the heat and electricity ratio on the hydrogen production rate and energy costs were analyzed. Based on the results, the hydrogen production costs were estimated, and cost reduction methods were discussed.[Results] The key results were as follows:1) a higher HTGR helium exit temperature resulted in a larger hydrogen production rate and lower energy costs. At 750℃, the maximum hydrogen production rate, electricity cost, heat cost, and total energy conversion efficiency of the HTGR hydrogen production system were 28 108 m3/h, 3.73 kW·h/m3, 0.49 kW·h/m3, and 40.1%, respectively. However, at 950℃, the maximum hydrogen production rate increased to 35 160 m3/h, the electricity cost fell to 3.11 kW·h/m3, the heating cost increased to 0.56 kW·h/m3, and the total energy conversion efficiency rose to 50.2%. These data fitted a system with 7 013 solid oxide electrolysis cell (SOEC) modules, as designed in this article. 2) Increasing the current density of SOEC would significantly decrease the cost of investment in the hydrogen production system and, therefore, the hydrogen production costs. For a 950℃ HTGR hydrogen production system, if the current density rose from 1 A/cm2 to 5 A/cm2, the power density of SOEC would increase five times, and the number of SOEC modules would drop to one-fifth; therefore, the investment cost of the module would be low. Following upgrades and breakthroughs in SOEC stack integration technology, each module would contain 150 SOEC cells instead of 30, and the number of modules would fall to 281, and this would be followed by a proportional drop in the balance of plant and repairing costs. However, the calculation results also showed that when the current density increased from 1 A/cm2 to 1.5 A/cm2, the hydrogen production cost dropped from 26.1 yuan/kg to 19.4 yuan/kg, which could fulfill the demand for hydrogen energy in transportation. 3) The production of valuable chemicals from the anode is another option for increasing the value of the anode product and expanding the application of high-temperature electrolysis via nuclear energy. In addition, the cost of the hydrogen would be apportioned. We also estimated the hydrogen production cost when ethane was added to the anode to produce ethene. When the conversion rate of ethane was higher than 20%, the production cost of both systems dropped significantly. Based on the 950℃ system, the hydrogen production cost would be lower than 20 yuan/kg with an ethane conversion rate above 28%; if the ethane conversion rate approaches 100%, the hydrogen production cost would be lower than 3.8 yuan/kg.[Conclusions] The proposed HTGR high-temperature electrolysis hydrogen production system has a high hydrogen production rate, low energy costs, and huge potential for further cost reduction, meaning that this technique is eco-friendly and can be employed on a large scale.
Key wordshigh-temperature gas-cooled reactor    high-temperature electrolysis hydrogen production    energy consumption    cost analysis of hydrogen production
收稿日期: 2023-01-19      出版日期: 2023-07-22
基金资助:国家自然科学基金资助项目(91645126,21273128);清华大学自主科研计划项目(2018Z05JZY010);清华-MIT-剑桥低碳能源大学联盟种子基金项目(201LC004)
通讯作者: 于波,研究员,E-mail:cassy_yu@tsinghua.edu.cn;张佑杰,教授,E-mail:zhangyj@tsinghua.edu.cn      E-mail: cassy_yu@tsinghua.edu.cn;zhangyj@tsinghua.edu.cn
作者简介: 曹军文(1997-),男,博士研究生。
引用本文:   
曹军文, 覃祥富, 胡轶坤, 张文强, 于波, 张佑杰. 高温气冷堆耦合高温电解规模化制氢系统仿真[J]. 清华大学学报(自然科学版), 2023, 63(8): 1246-1256.
CAO Junwen, QIN Xiangfu, HU Yikun, ZHANG Wenqiang, YU Bo, ZHANG Youjie. Simulation of a high-temperature gas-cooled reactor coupled high-temperature electrolytic large-scale hydrogen production system. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1246-1256.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.25.020  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I8/1246
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] HAUCH A, KVNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513):caba6118.
[2] ZHENG Y, CHEN Z W, ZHANG J J. Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels[J]. Electrochemical Energy Reviews, 2021, 4(3):508-517.
[3] JØRG A, CHRISTOS C, JASON G. Hydrogen forecast to 2050[OL].(2022-06-14)[2023-03-03]. https://www.dnv.com/focus-areas/hydrogen/forecast-to-2050.html.
[4] 曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12):2215-2244. CAO J W, ZHANG W Q, LI Y F, et al. Current status of hydrogen production in China[J]. Progress in Chemistry, 2021, 33(12):2215-2244. (in Chinese)
[5] 张平, 徐景明, 石磊, 等. 中国高温气冷堆制氢发展战略研究[J]. 中国工程科学, 2019, 21(1):20-28. ZHANG P, XU J M, SHI L, et al. Nuclear hydrogen production based on high temperature gas cooled reactor in China[J]. Strategic Study of CAE, 2019, 21(1):20-28. (in Chinese)
[6] GUTERMAN L. News at a glance[J]. Science, 2022, 375(6577):124-126.
[7] O'BRIEN J E, HARTVIGSEN J L, BOARDMAN R D, et al. A 25 kW high temperature electrolysis facility for flexible hydrogen production and system integration studies[J]. International Journal of Hydrogen Energy, 2020, 45(32):15796-15804.
[8] SAHIN S, SAHIN H M. Generation-IV reactors and nuclear hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46:28936-28948.
[9] TANG E, WOOD T, BROWN C, et al. Solid oxide based electrolysis and stack technology with ultra-high electrolysis current density (>3A/cm2) and efficiency[R]. Danbury:Fuel Cell Energy, 2018.
[10] WENDT D S, KNIGHTON L T. High temperature steam electrolysis process performance and cost estimates[R]. Idaho:Idaho National Laboratory, 2022.
[11] Office of Nuclear Energy. 4 nuclear power plants gearing up for clean hydrogen production[EB/OL]. (2022-11-09)[2022-12-25]. https://www.energy.gov/ne/articles/4-nuclear-power-plants-gearing-clean-hydrogen-production.
[12] 曹军文, 郑云, 张文强, 等. 能源互联网推动下的氢能发展[J]. 清华大学学报(自然科学版), 2021, 61(4):302-311. CAO J W, ZHENG Y, ZHANG W Q, et al. Hydrogen energy development driven by the energy internet[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(4):302-311. (in Chinese)
[13] LI Y F, ZHANG W Q, WU T, et al. Segregation induced self-assembly of highly active perovskite for rapid oxygen reduction reaction[J]. Advanced Energy Materials, 2018, 8(29):1801893.
[14] WU T, ZHANG W Q, LI Y F, et al. Micro-/nanohoneycomb solid oxide electrolysis cell anodes with ultralarge current tolerance[J]. Advanced Energy Materials, 2018, 8(33):1802203.
[15] ZHENG Y, WANG J C, YU B, et al. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs):Advanced materials and technology[J]. Chemical Society Reviews, 2017, 46(5):1427-1463.
[16] LI Y F, ZHANG W Q, ZHENG Y, et al. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability[J]. Chemical Society Reviews, 2017, 46(20):6345-6378.
[17] 曲新鹤, 胡庆祥, 倪航, 等. 基于高温气冷堆的制氢耦合炼钢系统初步设计和能量分析[J/OL]. (2022-12-26)[2023-03-03]. DOI:10.16511/j.cnki.qhdxxb.2023.25.002. QU X H, HU Q X, NI H, et al. Preliminary design and energy analysis of a steelmaking system coupled with nuclear hydrogen based on a high-temperature gas-cooled reactor[J/OL]. (2022-12-26)[2023-03-03]. DOI:10.16511/j.cnki.qhdxxb.2023.25.002. (in Chinese)
[18] HOSSEIN G. Solid oxide electrolysis system demonstration[R]. Danbury:FuelCell Energy, 2022.
[19] EBBESEN S D, JENSEN S H, HAUCH A, et al. High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells[J]. Chemical Reviews, 2014, 114(21):10697-10734.
[20] KASAI S, FUJIWARA S, YAMADA K, et al. Nuclear hydrogen production by high-temperature electrolysis[J]. Transactions of the Atomic Energy Society of Japan, 2009, 8(2):122-141.
[21] JAMES B D, DESANTIS D A, SAUR G. Final report:Hydrogen production pathways cost analysis (2013-2016)[R]. Arlington:Strategic Analysis Inc, 2016.
[22] 国家能源局. 氢能产业发展中长期规划(2021-2035年)[EB/OL]. (2022-03-23)[2023-03-03]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038_ext.html. National Energy Administration. Medium-and long-term planfor the development of hydrogen energy industry (2021-2035)[EB/OL]. (2022-03-23)[2023-03-03]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038_ext.html. (in Chinese)
[23] SHIMADA H, YAMAGUCHI T, KISHIMOTO H, et al. Nanocomposite electrodes for high current density over 3A·cm-2 in solid oxide electrolysis cells[J]. Nature Communications, 2019, 10(1):5432.
[24] CAO J W, LI Y F, ZHENG Y, et al. A novel solid oxide electrolysis cell with micro-/nano channel anode for electrolysis at ultra-high current density over 5A·cm-2[J]. Advanced Energy Materials, 2022, 12(28):2200899.
[25] SONG Y J, JI K Y, DUAN H H, et al. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides[J]. Exploration, 2021, 1(3):20210050.
[26] YE L T, SHANG Z B, XIE K. Selective oxidative coupling of methane to ethylene in a solid oxide electrolyser based on porous single-crystalline CeO2 monoliths[J]. Angewandte Chemie International Edition, 2022, 61(32):e202207211.
[27] SONG Y F, LIN L, FENG W C, et al. Interfacial enhancement by γ-Al2O3 of electrochemical oxidative dehydrogenation of ethane to ethylene in solid oxide electrolysis cells[J]. Angewandte Chemie International Edition, 2019, 58(45):16043-16046.
[28] CHEMICAL BOOK.乙烷价格指数[OL]. (2023-01-03)[2023-03-03].https://www.chemicalbook.com/priceindex_cb4223139.htm. CHEMICAL BOOK. Ethane price index[OL]. (2023-01-03)[2023-03-03].https://www.chemicalbook.com/priceindex_cb4223139.htm. (in Chinese)
[29] CHEMICAL BOOK. 乙烯价格指数[EB/OL]. (2023-01-03)[2023-03-02]. https://www.chemicalbook.com/priceindex_cb1441446.htm. CHEMICAL BOOK. Ethene price index[EB/OL]. (2023-01-03)[2023-03-02].https://www.chemicalbook.com/priceindex_cb1441446.htm. (in Chinese)
[1] 苏阳, 李晓伟, 吴莘馨, 张作义. 核反应堆蒸汽发生器两相流不稳定性现象规律、研究方法及应用[J]. 清华大学学报(自然科学版), 2023, 63(8): 1184-1203.
[2] 吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8): 1213-1218.
[3] 陈璞, 童节娟, 刘涛, 张勤昭, 王宏. 高温气冷堆主氦风机预防性维修策略研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1219-1225.
[4] 曲新鹤, 胡庆祥, 倪航, 彭威, 赵钢, 王捷. 基于高温气冷堆的制氢耦合炼钢系统初步设计和能量分析[J]. 清华大学学报(自然科学版), 2023, 63(8): 1236-1245.
[5] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[6] 史力, 赵加清, 刘兵, 李晓伟, 雒晓卫, 张征明, 张平, 孙立斌, 吴莘馨. 高温气冷堆关键材料技术发展战略[J]. 清华大学学报(自然科学版), 2021, 61(4): 270-278.
[7] 李晓伟, 吴莘馨, 张作义, 赵加清, 雒晓卫. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版), 2021, 61(4): 329-337.
[8] 王捷, 王宏, 赵钢, 杨小勇, 叶萍, 曲新鹤. 高温气冷堆氦气透平压气机和主氦风机研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 350-360.
[9] 刘仁杰, 孙跃文, 刘锡明, 苗积臣, 周立业, 丛鹏. 基于螺旋CT的高温气冷堆石墨构件及碳砖缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(4): 367-376.
[10] 孙世妍, 张佑杰, 郑艳华, 夏冰. HTR-10超高温运行堆芯温度场分析[J]. 清华大学学报(自然科学版), 2021, 61(11): 1301-1307.
[11] 胡振中, 袁爽. 建筑能耗与环境监测系统标准化数据提取技术[J]. 清华大学学报(自然科学版), 2020, 60(4): 357-364.
[12] 陈浩, 袁良信, 郑四发, 连小珉. 基于能耗优化的电动轮汽车转矩动态分配[J]. 清华大学学报(自然科学版), 2020, 60(2): 132-138.
[13] 徐晓娜, 黄晓津. 高温气冷堆核电站计算机化规程流程的建模和验证[J]. 清华大学学报(自然科学版), 2018, 58(7): 658-663.
[14] 明亮, 杨小勇, 张佑杰, 王捷, 傅林, 李珊, 王琦. 叶顶间隙与轴向间隙对氦气压气机气动特性的影响[J]. 清华大学学报(自然科学版), 2017, 57(8): 832-837.
[15] 宁涛, 顾春伟. 基于大涡模拟的圆管脉动湍流减阻数值分析[J]. 清华大学学报(自然科学版), 2017, 57(5): 511-515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn