Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (4): 623-632    DOI: 10.16511/j.cnki.qhdxxb.2023.25.022
  论文 本期目录 | 过刊浏览 | 高级检索 |
孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛
哈尔滨工程大学 动力与能源工程学院, 哈尔滨 150001
Comparison of NOx numerical models for methane/air combustion simulations
SUN Jihao, LUO Shaowen, ZHAO Ningbo, YANG Huiling, ZHENG Hongtao
College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
全文: PDF(6882 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为明确不同NOx数值模型对甲烷/空气燃烧NOx生成特性的适用性和差异性,以射流扩散火焰、旋流预混火焰、燃气轮机燃烧室为研究对象,分析了NOx后处理模型法、解耦详细反应机理法和附加NOx输运方程法对甲烷/空气燃烧NOx生成特性模拟的适用性和差异性。结果表明:火焰后方N2O的生成量较少,NO2的生成量极少,NO含量占总NOx的95.00%以上;NOx后处理模型法可准确模拟火焰附近的NOx生成位置和火焰后方的NOx生成速率,但该模型低估了火焰位置的NOx生成量和生成速率,并且不能再现火焰锋面附近N2O浓度先升高后下降的变化规律;附加NOx输运方程法对火焰锋面处的NOx生成位置、生成量和生成速率的计算精度最高,但该模型低估了火焰锋面后方的NOx生成速率;解耦详细反应机理法对NOx生成特性的预测精度最差。
E-mail Alert
关键词 NOx模型数值模拟射流扩散火焰旋流预混火焰燃烧室    
Abstract:[Objective] Correct usage of models for NOx combustion simulations can considerably reduce the computational time compared to directly coupling the detailed chemical mechanisms. Several NOx models are available: the NOx postprocessing model, decoupled detailed mechanism model, and adding NOx transport equations in flamelet generated manifold (FGM) model. However, their differences and applicability remain unclear, so choosing a model for a particular work is challenging. Therefore, the differences and applicability of these models must be verified under different situations, particularly for diffusion combustion, premixed combustion, and real combustors (partly premixed combustion). [Methods] In this study, numerical simulations were performed on a diffusion jet flame (Sandia flame D), premixed swirl flame (Cambridge swirl flame SW3), and partly premixed flame (an industrial gas turbine combustor) to thoroughly understand the differences and applicability of these three models. The turbulence and combustion models were the realizable standard k-ε model and the flamelet-generated manifold model, respectively. The turbulence and combustion models were verified against the experimental results; furthermore, the NOx (including NO, NO2, and N2O) distribution and formation characteristics, as well as NOx emissions, were compared and discussed with the experimental results. For the NOx postprocessing model, O and OH radicals were treated as partial equilibrium consumption, and the turbulence-combustion interaction was modeled as β-PDF (β-probability density function, PDF) consumption. For the decoupled detailed mechanism model, the species (excluding NOx), pressure, velocity, and temperature distributions were obtained using numerical simulation and held constant, and then NOx chemistry was solved. For the added NOx transport equation model, the three NOx transport equations of NO, NO2, and N2O were added to the PDF table to calculate NOx (including NO, NO2, and N2O). During the computation of NOx transport equations, only NO, NO2, and N2O were solved, and the remaining species, such as O, OH, and CH, were directly read from the PDF table. [Results] (1) For diffusion combustion, premixed combustion, and the gas turbine combustor, NO accouned for more than 95.00% of the total NOx behind the flame (at the burned-out zone), the amount of N2O was relatively small, and the amount of NO2 was negligible. (2) The NOx postprocessing model could accurately simulate the NOx formation position near the flame (at the reacting zone) and the NOx generation rate behind the flame; however, this method underestimated the NOx concentration and NOx generation rate at the flame position. Moreover, the NOx postprocessing model couldn't reproduce the phenomenon of the initial increase in the N2O concentration near the flame and then its decrease. (3) The added NOx transport equation model showd the best accuracy for the NOx generation position, NOx concentration, and NOx formation rate near the flame, but it underestimated the NOx generation rate behind the flame. (4) The decoupled detailed mechanism model showd the worst accuracy in NOx simulation and couldn't correctly predict the NOx formation characteristics of the three studied cases. [Conclusions] The decoupled detailed mechanism model may not be suitable for NOx simulation under some conditions. To capture NOx formation and distribution characteristics, the postprocessing model and added NOx transport equation model can be used. However, the postprocessing model may not provide quantitative results, particularly in diffusion flames. The added NOx transport equation model may be suitable under most conditions.
Key wordsNOx model    numerical simulation    diffusion jet flame    premixed swirl flame    combustor
收稿日期: 2023-02-16      出版日期: 2023-04-22
通讯作者: 赵宁波,副教授,     E-mail:
作者简介: 孙继昊(1994-),男,博士研究生。
孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
SUN Jihao, LUO Shaowen, ZHAO Ningbo, YANG Huiling, ZHENG Hongtao. Comparison of NOx numerical models for methane/air combustion simulations. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 623-632.
链接本文:  或
[1] WANG L J, WANG J, TAN X D, et al. Analysis of NOx pollution characteristics in the atmospheric environment in Changchun city[J]. Atmosphere, 2020, 11(1):30.
[2] AHMAD N, NAIRUI L, TARIQ M, et al. NOx emission prediction analysis and comparison in gas turbine combustor utilizing CFD and CRN combined approach[C]//Proceedings of the Sixth International Conference on Aerospace Science and Engineering (ICASE). Islamabad, Pakistan:IEEE, 2019:1-9.
[3] YOUSEFIAN S, BOURQUE G, MONAGHAN R F D. Review of hybrid emissions prediction tools and uncertainty quantification methods for gas turbine combustion systems[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition. Charlotte, USA:ASME, 2017:V04BT04A005.
[4] 母滨,雷福林,邵卫卫,等.贫预混燃烧室化学反应器网络模型建模及不确定性分析[J].航空动力学报, 2019, 34(10):2108-2119. MU B, LEI F L, SHAO W W, et al. Modeling and uncertainty analysis of chemical reactor network model in lean premixed combustion chamber[J]. Journal of Aerospace Power, 2019, 34(10):2108-2119.(in Chinese)
[5] GLARBORG P, MILLER J A, RUSCIC B, et al. Modeling nitrogen chemistry in combustion[J]. Progress in Energy and Combustion Science, 2018, 67:31-68.
[6] MATSSON J E. An Introduction to ANSYS Fluent 2022[M]. Kansas:Sdc Publications, 2022.
[7] KETELHEUN A, OLBRICHT C, HAHN F, et al. NO prediction in turbulent flames using LES/FGM with additional transport equations[J]. Proceedings of the Combustion Institute, 2011, 33(2):2975-2982.
[8] 唐军,宋文艳.基于FGM和附加输运方程的NO数值模拟方法研究[J].推进技术, 2017, 38(7):1523-1531. TANG J, SONG W Y. Numerical study of NO formation with FGM and an additional transport equation[J]. Journal of Propulsion Technology, 2017, 38(7):1523-1531.(in Chinese)
[9] VAN OIJEN J A, DE GOEY L P H. Predicting NO formation with Flamelet generated manifolds[C]//Proceedings of the 4th European Combustion Meeting. Vienna, Austria:TU Wien, 2009:810248.
[10] AN Z H, ZHANG M, ZHANG W J, et al. Emission prediction and analysis on CH4/NH3/air swirl flames with LES-FGM method[J]. Fuel, 2021, 304:121370.
[11] WESTENBERG A A. Kinetics of NO and CO in lean, premixed hydrocarbon-air flames[J]. Combustion Science and Technology, 1971, 4(1):59-64.
[12] WARNATZ J. NOx formation in high temperature processes[D]. Germany:University of Stuttgart, 2001.
[13] BAULCH D L, COBOS C J, COX R A, et al. Evaluated kinetic data for combustion modelling[J]. Journal of Physical and Chemical Reference Data, 1992, 21(3):411-734.
[14] DE SOETE G G. Overall reaction rates of NO and N2 formation from fuel nitrogen[J]. Symposium (international) on Combustion, 1975, 15(1):1093-1102.
[15] VAN OIJEN J A, DE GOEY L P H. Modelling of premixed laminar flames using flamelet-generated manifolds[J]. Combustion Science and Technology, 2000, 161(1):113-137.
[16] DONINI A, BASTIAANS R J M, VAN OIJEN J A, et al. A 5-D implementation of FGM for the large eddy simulation of a stratified swirled flame with heat loss in a gas turbine combustor[J]. Flow, Turbulence and Combustion, 2017, 98(3):887-922.
[17] 李威,张哲巅.某航空发动机燃烧室天然气湿燃烧数值模拟研究[J].热能动力工程, 2021, 36(5):126-133. LI W, ZHANG Z D. Numerical investigation on a jet-engine combustor fueled by humidified natural gas[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(5):126-133.(in Chinese)
[18] 刘富强,张栋芳,崔耀欣,等.某重型燃气轮机环形燃烧室的数值模拟[J].燃气轮机技术, 2011, 24(1):20-25. LIU F Q, ZHANG D F, CUI Y X, et al. Numerical simulation of combustion flow in the heavy gas turbine annular combustor[J]. Gas Turbine Technology, 2011, 24(1):20-25.(in Chinese)
[19] 党新宪,赵坚行,吉洪湖.双旋流器燃烧室NOx生成研究[J].航空动力学报, 2008, 23(3):430-435. DANG X X, ZHAO J X, JI H H. A study on NOx formation for double swirler combustor[J]. Journal of Aerospace Power, 2008, 23(3):430-435.(in Chinese)
[20] 康尧,林宇震,付镇柏,等.台阶高度对LESS燃烧室的影响研究[J].推进技术, 2014, 35(7):941-949. KANG Y, LIN Y Z, FU Z B, et al. Effects of step height on low emission stirred swirl combustor[J]. Journal of Propulsion Technology, 2014, 35(7):941-949.(in Chinese)
[21] MALLOUPPAS G, GOLDIN G, ZHANG Y Z, et al. Investigation of an industrial gas turbine combustor and pollutant formation using LES[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition. Charlotte, USA:ASME, 2017:V04BT04A039.
[22] BARLOW R S, FRANK J H. Pilotes CH4/Air Flames C, D, E, and F:Release 2.1[R/OL].[2010-05-10].
[23] SWEENEY M S, HOCHGREB S, DUNN M J, et al. The structure of turbulent stratified and premixed methane/air flames Ⅱ:Swirling flows[J]. Combustion and Flame, 2012, 159(9):2912-2929.
[24] STOPPER U, AIGNER M, MEIER W, et al. Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(2):021504.
[25] STOPPER U, AIGNER M, AX H, et al. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames[J]. Experimental Thermal and Fluid Science, 2010, 34(3):396-403.
[26] BULAT G, JONES W P, MARQUIS A J. NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method[J]. Combustion and Flame, 2014, 161(7):1804-1825.
[27] LAUNDER B E, SPALDING D B. Lectures in mathematical models of turbulence[M]. London:Academic Press, 1972.
[28] SMITH G P, GOLDEN D M, FRENKLACH M, et al. GRI-MECH 3.0[EB/OL].(1999-08-06)[2022-12-21].
[29] 孙继昊.甲烷/空气机理简化及燃烧室污染物空间分布[D].哈尔滨:哈尔滨工程大学, 2020. SUN J H. Reduction of methane/air mechanism and spatial distribution of combustor pollutants[D]. Harbin:Harbin Engineering University, 2020.(in Chinese)
[30] TURNS S R. Introduction to combustion:Concepts and applications[M]. New York:McGraw-Hill Companies, 1996.
[31] 徐琛,孙继昊,赵宁波. O3对射流火焰燃烧特性影响的数值研究[J].燃气涡轮试验与研究, 2021, 34(1):27-33. XU C, SUN J H, ZHAO N B. Numerical study of the effect of O3 on combustion characteristics of jet flame[J]. Gas Turbine Experiment and Research, 2021, 34(1):27-33.(in Chinese)
[32] SUN J H, ZHANG Z H, LIU X, et al. Reduced methane combustion mechanism and verification, validation, and accreditation (VV&A) in CFD for NO emission prediction[J]. Journal of Thermal Science, 2021, 30(2):610-623.
[33] APELOIG J, GAUTIER P, SALAVN E, et al. PLIF measurements of nitric oxide and hydroxyl radicals distributions in swirled stratified premixed flames[C/OL]//Instituto Superior Técnico-Center for Innovation, Technology andPolicy Research.(2016-07-04)[2022-12-21].
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[3] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[4] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[5] 耿俊杰, 王兴建, 李嘉璐, 费腾, 祁海鹰. 燃烧室流动混合过程的代理模型[J]. 清华大学学报(自然科学版), 2023, 63(4): 633-641.
[6] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[7] 田园, 耿俊杰, 孙逸凡, 祁海鹰. 天然气径向分级燃烧室低NOx排放的优化研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 660-669.
[8] 莫毅, 陈璠, 许笑颜, 焦哲, 卫刚, 林宏军, 肖为, 王方, 任祝寅. 航空发动机燃烧室两相湍流燃烧建模与仿真[J]. 清华大学学报(自然科学版), 2023, 63(4): 670-680.
[9] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[10] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[11] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[12] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[13] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[14] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[15] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持