Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (12): 2005-2018    DOI: 10.16511/j.cnki.qhdxxb.2023.25.029
  建筑科学 本期目录 | 过刊浏览 | 高级检索 |
数据特征对剪力墙结构生成式智能设计的影响
刘元鑫1,2, 廖文杰1,3, 林元庆4, 解琳琳3, 陆新征1
1. 清华大学 土木工程系, 北京 100084;
2. 山东建业工程科技有限公司, 临沂 276000;
3. 北京建筑大学 大型多功能振动台阵实验室, 北京 100044;
4. 中国核电工程有限公司 郑州分公司, 郑州 450052
Influence of data features on the generative adversarial network-based intelligent design for shear wall structures
LIU Yuanxin1,2, LIAO Wenjie1,3, LIN Yuanqing4, XIE Linlin3, LU Xinzheng1
1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
2. Shandong Jianye Engineering Technology Co., Ltd., Linyi 276000, China;
3. Multi-Functional Shaking Tables Laboratory, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
4. China Nuclear Power Engineering Co., Ltd. Zhengzhou Branch, Zhengzhou 450052, China
全文: PDF(20219 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 深度学习通过提取和学习剪力墙结构数据高维特征掌握智能设计技术,有效推动了建筑结构智能化设计的发展。数据驱动的结构智能设计通常受训练数据的数量和分布特征影响,但鲜有研究开展数据特征相关分析。该文通过收集设计习惯相似且地域相近的剪力墙建筑-结构设计图纸数据,开展了数据分布和数量特征与设计结果的相关性分析;提出混合数据训练联合特征分组训练的两阶段改进训练方法,有效提升了智能设计质量;采用与训练数据高度非同源的其他地区数据对研究结果进行了测试与检验。分析表明:数据低维特征的回归分析难以有效指导设计生成,而基于深度学习的高维特征学习则能有效掌握结构设计的潜在规律;随着训练数据量增加,智能设计效果也将得到平均20%以上的提升。通过典型案例研究证明:智能设计与工程师设计的平面设计相似性及整体结构力学性能相似性均较高,最大层间位移角的平均差异仅约8%。但是,当测试数据与训练数据特征差异过于显著时,智能设计质量将会受限。该研究通过对数据分布和数量特征与智能设计结果的相关性分析,为下一步开展基于深度学习的智能化结构设计研究提供了数据特征影响方面的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘元鑫
廖文杰
林元庆
解琳琳
陆新征
关键词 结构设计智能设计数据特征生成对抗网络剪力墙结构    
Abstract:[Objective] Deep learning methods have mastered sophisticated structural design skills via feature extraction and data-driven learning, thus significantly advancing intelligent building structural design. The performance of data-driven intelligent structural design typically depends on the quantity and distribution of training data. However, only a few studies have investigated the relationship between the learned data features and the intelligent design, thus limiting its performance. This study aims to study the influence of training data distribution and quantity on structural design and subsequently improve intelligent design quality.[Methods] Two typical datasets are generated by collecting the shear wall architectural-structural design drawing data from two distinct regions (Beijing and Shandong) with different design habits. Based on the Shandong dataset, the data distribution characteristics are studied, and the correlation between the design conditions, the structural planer, the vertical shape, and the equivalent ratio of the shear wall to the architectural plan area are investigated using linear regression analysis. Subsequently, a generative adversarial network-based intelligent design method for building structures is adopted to extract and learn high-dimensional data features. According to the quantity and the distribution characteristics of data, this study has proposed a data augmentation method and a two-stage training method, wherein all data is hybridized for training in the first stage, and the data grouped by different design conditions is used in the second stage, thereby improving the design quality of intelligent design models. In addition, the Beijing dataset, which is substantially different from the training data, is used to evaluate and validate the study results using various training methods and training data quantities. Finally, to validate the results and illustrate the performance of the intelligent structural design, typical cases with three different design conditions are used, namely, 7 degree seismic intensity and 27 m structural height, 7 degree seismic intensity and 54 m structural height, and 8 degree seismic intensity and 39 m structural height.[Results] The analysis results demonstrated the following. 1) The regression analysis based on low-dimensional data features could not guide the design generation properly for complicated structures, such as shear walls. In contrast, high-dimensional feature learning based on deep learning might effectively capture the potential design laws and optimize the design generation. 2) With the improvement of the quantity of training data and the training strategy, the quality of the intelligent design structure increased by an average above 20%; however, the quality of the intelligent design was compromised when the properties of the test and training data were considerably different (with a shear wall ratio difference of over 50%). 3) Moreover, the analysis results were evaluated using relevant case studies. Regarding the plane's design and the mechanical performance of the overall structure, the intelligent design and the engineer's design had a high degree of resemblance, and the maximum interstory drift ratio varied by up to 8% on average.[Conclusions] Consequently, by assessing the data distribution, design conditions, and quantitative properties, the generative adversarial network-based intelligent structural design may provide high-quality designs with suitable training datasets. Furthermore, this study provides a reference for future research on intelligent structural design based on deep learning and the influence of data features.
Key wordsstructural design    intelligent design    data features    generative adversarial networks    shear wall structure
收稿日期: 2022-10-19      出版日期: 2023-11-06
基金资助:北京建筑大学大型多功能振动台阵实验室开放研究专项基金资助项目(2022MFSTL08);中国博士后科学基金资助项目(2022M721879);腾讯基金会(科学探索奖),清华大学“水木学者”计划项目(2022SM005)
通讯作者: 廖文杰,助理研究员,E-mail:liaowj17@tsinghua.org.cn     E-mail: liaowj17@tsinghua.org.cn
作者简介: 刘元鑫(1976—),女,硕士研究生。
引用本文:   
刘元鑫, 廖文杰, 林元庆, 解琳琳, 陆新征. 数据特征对剪力墙结构生成式智能设计的影响[J]. 清华大学学报(自然科学版), 2023, 63(12): 2005-2018.
LIU Yuanxin, LIAO Wenjie, LIN Yuanqing, XIE Linlin, LU Xinzheng. Influence of data features on the generative adversarial network-based intelligent design for shear wall structures. Journal of Tsinghua University(Science and Technology), 2023, 63(12): 2005-2018.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.25.029  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I12/2005
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] DAVIES J. Smart contract operating project networks:Using integrated functionality for improving workflow, transparency, and easier collaboration[D]. Denmark:Via University College, 2018.
[2] 周绪红,刘界鹏,冯亮,等.建筑智能建造技术初探及其应用[M].北京:中国建筑工业出版社, 2021. ZHOU X H, LIU J P, FENG L, et al. A preliminary exploration and application of building intelligent construction technology[M]. Beijing:China Architecture&Building Press, 2021.(in Chinese)
[3] MáLAGA-CHUQUITAYPE C. Machine learning in structural design:An opinionated review[J]. Frontiers in Built Environment, 2022, 8:815717.
[4] SUN H, BURTON H V, HUANG H L. Machine learning applications for building structural design and performance assessment:State-of-the-art review[J]. Journal of Building Engineering, 2021, 33:101816.
[5] PIZARRO P N, HITSCHFELD N, SIPIRAN I, et al. Automatic floor plan analysis and recognition[J]. Automation in Construction, 2022, 140:104348.
[6] CHANG K H, CHENG C Y. Learning to simulate and design for structural engineering[C]//International Conference on Machine Learning. PMLR, 2020:1426-1436.
[7] CHANG K H, CHENG C Y, LUO J L, et al. Building-GAN:Graph-conditioned architectural volumetric design generation[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal, Canada:IEEE, 2021:11956-11965.
[8] NAUATA N, HOSSEINI S, CHANG K H, et al. House-GAN++:Generative adversarial layout refinement network towards intelligent computational agent for professional architects[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA:IEEE, 2021:13632-13641.
[9] HAYASHI K, OHSAKI M. Graph-based reinforcement learning for discrete cross-section optimization of planar steel frames[J]. Advanced Engineering Informatics, 2022, 51:101512.
[10] ZHU S J, OHSAKI M, HAYASHI K, et al. Machine-specified ground structures for topology optimization of binary trusses using graph embedding policy network[J]. Advances in Engineering Software, 2021, 159:103032.
[11] JEONG J H, JO H. Deep reinforcement learning for automated design of reinforced concrete structures[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(12):1508-1529.
[12] LIAO W J, LU X Z, HUANG Y L, et al. Automated structural design of shear wall residential buildings using generative adversarial networks[J]. Automation in Construction, 2021, 132:103931.
[13] LU X Z, LIAO W J, ZHANG Y, et al. Intelligent structural design of shear wall residence using physics-enhanced generative adversarial networks[J]. Earthquake Engineering&Structural Dynamics, 2022, 51(7):1657-1676.
[14] LIAO W J, HUANG Y L, ZHENG Z, et al. Intelligent generative structural design method for shear wall building based on "fused-text-image-to-image" generative adversarial networks[J]. Expert Systems with Applications, 2022, 210:118530.
[15] FEI Y F, LIAO W J, ZHANG S, et al. Integrated schematic design method for shear wall structures:A practical application of generative adversarial networks[J]. Buildings, 2022, 12(9):1295.
[16] ZHAO P J, LIAO W J, XUE H J, et al. Intelligent design method for beam and slab of shear wall structure based on deep learning[J]. Journal of Building Engineering, 2022, 57:104838.
[17] 廖文杰,陆新征,黄羽立,等.剪力墙结构智能化生成式设计方法:从数据驱动到物理增强[J/OL].(2022-07-21)[2022-10-10]. http://kns.cnki.net/kcms/detail/50.1218.TU.20220720.1117.004.html. LIAO W J, LU X Z, HUANG Y L, et al. Intelligent generative structural design methods for shear wall buildings:From data-driven to physics-enhanced[J/OL].(2022-07-21)[2022-10-10]. http://kns.cnki.net/kcms/detail/50.1218.TU.20220720.1117.004.html.(in Chinese)
[18] FEI Y F, LIAO W J, HUANG Y L, et al. Knowledge-enhanced generative adversarial networks for schematic design of framed tube structures[J]. Automation in Construction, 2022, 144:104619.
[19] 程国忠,周绪红,刘界鹏,等.基于深度强化学习的高层剪力墙结构智能设计方法[J].建筑结构学报, 2022, 43(9):84-91. CHENG G Z, ZHOU X H, LIU J P, et al. Intelligent design method of high-rise shear wall structures based on deep reinforcement learning[J]. Journal of Building Structures, 2022, 43(9):84-91.(in Chinese)
[20] PIZARRO P N, MASSONE L M, ROJAS F R, et al. Use of convolutional networks in the conceptual structural design of shear wall buildings layout[J]. Engineering Structures, 2021, 239:112311.
[21] PIZARRO P N, MASSONE L M. Structural design of reinforced concrete buildings based on deep neural networks[J]. Engineering Structures, 2021, 241:112377.
[22] WANG T C, LIU M Y, ZHU J Y, et al. High-resolution image synthesis and semantic manipulation with conditional GANs[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA:IEEE, 2018:8798-8807.
[23] 龙湖地产集团总部.龙湖地产结构设计限额控制指标[R]. 2014. LONGFOR PROPERTIES CO LTD. Structure design quota control index of Longfor Properties Co Ltd.[R]. 2014.(in Chinese)
[24] TAFRAOUT S, BOURAHLA N, BOURAHLA Y, et al. Automatic structural design of RC wall-slab buildings using a genetic algorithm with application in BIM environment[J]. Automation in Construction, 2019, 106:102901.
[1] 张青松, 贾山, 陈金宝, 徐颖珊, 佘智勇, 蔡成志, 潘一华. 组合体无人机单体机翼构型设计与拓扑优化[J]. 清华大学学报(自然科学版), 2023, 63(3): 423-432.
[2] 冷智颖, 孙跃文, 童建民, 王振涛. 基于生成对抗网络的车辆辐射图像复原方法[J]. 清华大学学报(自然科学版), 2022, 62(10): 1691-1696.
[3] 许锋, 潘琦, 王一岚, 罗雄麟. 工业过程多变量系统常规控制结构的频域设计[J]. 清华大学学报(自然科学版), 2016, 56(4): 448-452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn