Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (8): 1282-1290    DOI: 10.16511/j.cnki.qhdxxb.2023.25.031
  论文 本期目录 | 过刊浏览 | 高级检索 |
空间堆Brayton系统旁路阀功率快速调节特性
马文魁, 叶萍, 曲新鹤, 杨小勇
清华大学 核能与新能源技术研究院, 先进核能技术协同创新中心, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Features of transient power regulation by a bypass valve control for a Brayton space nuclear power system
MA Wenkui, YE Ping, QU Xinhe, YANG Xiaoyong
Key Laboratory of Advanced Reactor Engineering and Safety of the Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(4354 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 长寿命、高能量密度和高效率的动力系统是实现未来太空探索目标的必要条件,空间反应堆耦合Brayton系统是兆瓦级空间动力系统的最佳选择之一。功率控制特性是满足系统安全高效运行的关键。该文建立了空间堆Brayton系统动态模型,研究了旁路阀控制下系统的升、降功率特性。结果发现:当载荷变化时,旁路阀控制可快速改变系统局部流量;叶轮机械工况、涡轮和压气机功率及系统电功率能快速响应空间设备的用电需求和负载变化作出相应改变;同时,系统载荷变化导致转动部件对轴的扭矩失衡,容易出现超速事故,旁路控制降低涡轮的输出功率,可有效避免转轴超速的风险。在此基础上,研究了旁路阀开度的敏感性影响,结果发现:系统低压侧和辐射散热回路对旁路阀控制引起的参数扰动最为敏感。旁路阀开度增加后,压气机出口高压气体与涡轮出口低压气体混合,使低压侧管道和部件压力升高;辐射器散热功率增加导致散热回路温度升高,因而辐射器需要更大的散热能力。本研究为空间堆Brayton系统的安全稳定运行提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马文魁
叶萍
曲新鹤
杨小勇
关键词 空间堆闭式Brayton循环旁路阀功率控制    
Abstract:[Objective] Long lifespan, compact, high-energy density, and efficient power systems are necessary to achieve future space exploration goals. The space reactor coupled Brayton cycle is high in energy conversion efficiency, small in volume, light in weight, and stable in operation, which is optimal for megawatt space power systems. The power control features are the key to the safe and efficient operation of a Brayton space nuclear power system. The reactor reactivity, inventory, and bypass valve are effective means of system power control. The bypass valve can change the local mass flow rate of a Brayton system and is expected to rapidly control system power to meet the frequently changing load of a space vehicle.[Methods] In this paper, a model of a Brayton space reactor system is established. A system power control simulation program is compiled based on the idea of modular modeling, each component of the system is solved independently, and the mass, momentum, and energy are transferred through data transmission between components. The calculation results of the model in this paper are compared with the simulation results of the startup process in the references, and the accuracy of the program and model is verified. The power-on and power-off transient performance of the system under the control of the bypass valve is investigated, and the effects of the bypass valve opening on system performance are studied.[Results] The power-on and power-off transient results of the system under bypass valve control indicated that bypass valve control could quickly change the pressure and distribution of mass flow rates in the system, the working conditions of the turbine and compressor, and the output power of the system, which could quickly respond to the power demand and load changes of a space vehicle. The change in the load led to a torque unbalance of the shaft, which could further induce rotating shaft overspeed accidents. The strong centrifugal force may damage the blades of the turbine and compressor. The bypass control adjusted the mass flow rate, pressure ratio, and output power of the turbine and compressor, controlled the shaft speed to operate near the rated value and simultaneously avoided the overspeed risk of the rotating shaft. Furthermore, the effect results of the bypass valve opening on system performance showed that the low-pressure side of the system and the radiant heat reject loop were sensitive to the parameter disturbance caused by the bypass valve control. The high-pressure gas at the compressor outlet mixed with the low-pressure gas at the turbine outlet through the bypass valve, and the pressure of the low-pressure side pipes and components increased. The elevated heat rejection power of the radiator increased the temperature of the heat reject loop, and the radiator needed greater heat rejection capacity.[Conclusions] Therefore, bypass valve control is an effective means to control the power and prevent shaft overspeed in a Brayton space nuclear power system. This study provides a reference for operating a Brayton space reactor system.
Key wordsspace reactor    closed Brayton cycle    bypass valve    power control
收稿日期: 2022-09-30      出版日期: 2023-07-22
基金资助:国家原子能机构核能开发项目;中核集团领创项目;国家科技重大专项资助项目(ZX069)
通讯作者: 杨小勇,副研究员,E-mail:xy-yang@tsinghua.edu.cn      E-mail: xy-yang@tsinghua.edu.cn
作者简介: 马文魁(1995-),男,博士研究生。
引用本文:   
马文魁, 叶萍, 曲新鹤, 杨小勇. 空间堆Brayton系统旁路阀功率快速调节特性[J]. 清华大学学报(自然科学版), 2023, 63(8): 1282-1290.
MA Wenkui, YE Ping, QU Xinhe, YANG Xiaoyong. Features of transient power regulation by a bypass valve control for a Brayton space nuclear power system. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1282-1290.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.25.031  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I8/1282
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] ROMANO L F R, RIBEIRO G B. Optimization of a heat pipe-radiator assembly coupled to a recuperated closed Brayton cycle for compact space power plants[J]. Applied Thermal Engineering, 2021, 196:117355.
[2] ANGELO J A JR, BUDEN D. Space nuclear power[M]. Malabar:Krieger Pub Co., 1985.
[3] BIONDI A, TORO C. Closed Brayton cycles for power generation in space:Modeling, simulation, and exergy analysis[J]. Energy, 2019, 181:793-802.
[4] RIBEIRO G B, GUIMARÃES L N F, FILHO F A B. Design-based model of a closed Brayton cycle for space powersystems[C/OL]//NETS-Nuclear and Emerging Technologies for Space.[2022-09-27].https://www.researchgate.net/publication/303250989_Design-Based_Model_of_a_Closed_Brayton_Cycle_for_Space_Power_Systems.
[5] LEVINE B. Space nuclear power plant pre-conceptual design report, for information[R]. Niskayuna, USA:Knolls Atomic Power Laboratory (KAPL), 2006.
[6] WRIGHT S A, LIPINSKI R J, VERNON M E, et al. Closed Brayton cycle power conversion systems for nuclear reactors:Modeling, operations, and validation[J]. National Nuclear Security Administration, 2006:SAND2006-2518520332.
[7] LI Z, YANG X Y, WANG J, et al. Off-design performanceand control characteristics of space reactor closed Brayton cycle system[J]. Annals of Nuclear Energy, 2019, 128:318-329.
[8] JOHNSON P K, MASON L. Performance and operational characteristics for a dual Brayton space power system with common gas inventory[C]//The 4th International Energy Conversion Engineering Conference and Exhibit. San Diego, USA:AIAA, 2006:4167.
[9] WRIGHT S A. Preliminary results of a dynamic systems model for a closed-loop Brayton cycle system coupled to a nuclear reactor[C]//The 1st International Energy Conversion Engineering Conference. Portsmouth, USA:AIAA, 2003:6008.
[10] WRIGHT S A, SANCHEZ T. Dynamic modeling and control of nuclear reactors coupled to closed-loop Brayton cycle systems using SIMULINKTM[J]. AIP Conference Proceedings, 2005, 746(1):991.
[11] WRIGHT S A, FULLER R, LIPINSKI R J, et al. Operational results of a closed Brayton cycle test-loop[J]. AIP Conference Proceedings, 2005, 746(1):699.
[12] EL-GENK M S, TOURNIER J M P, GALLO B M. Dynamic simulation of a space reactor system with closed Brayton cycle loops[J]. Journal of Propulsion and Power, 2010, 26(3):394-406.
[13] EL-GENK M S, TOURNIER J M P. DynMo-CBC:Dynamic simulation model of space reactor power system with direct closed Brayton cycles[C]//The 7th International Energy Conversion Engineering Conference. Denver, USA:AIAA, 2009:AIAA-2009-4596.
[14] MENG T, CHENG K, ZHAO F L, et al. Dynamic simulation of the gas-cooled space nuclear reactor system using SIMCODE[J]. Annals of Nuclear Energy, 2021, 159:108293.
[15] MA W K, YE P, ZHAO G, et al. Effect of cooling schemes on performance of MW-class space nuclear closed Brayton cycle[J]. Annals of Nuclear Energy, 2021, 162:108485.
[16] TAYLOR M F, BAUER K E, MCELIGOT D M. Internal forced convection to low-Prandtl-number gas mixtures[J]. International Journal of Heat and Mass Transfer, 1988, 31(1):13-25.
[17] VON ARX A V, CEYHAN I. Laminar heat transfer for low Prandtl number gases[J]. AIP Conference Proceedings, 1991, 217(2):719.
[18] MA W K, YE P, GAO Y, et al. Comparative study on sequential and simultaneous startup performance of space nuclear power system with multi Brayton loops[J]. Acta Astronautica, 2022, 199:142-152.
[19] GALLO B M, EL-GENK M S. Brayton rotating units for space reactor power systems[J]. Energy Conversion and Management, 2009, 50(9):2210-2232.
[20] GALLO B M, EL-GENK M S, TOURNIER J M. Compressor and turbine models of Brayton units for space nuclear power systems[J]. AIP Conference Proceedings, 2007, 880(1):472-482.
[21] EL-GENK M S, GALLO B M. High-power Brayton rotating unit for reactor and solar dynamic power systems[J]. Journal of Propulsion and Power, 2010, 26(1):167-176.
[22] KIM J H, NO H C, KIM H M, et al. A system analysis tool with a 2D gas turbine modeling for the load transients of HTGRS[J]. Nuclear Engineering and Design, 2009, 239(11):2459-2467.
[23] EL-GENK M S, TOURNIER J M. Noble gas binary mixtures for gas-cooled reactor power plants[J]. Nuclear Engineering and Design, 2008, 238(6):1353-1372.
[24] XU C, KONG F L, YU D L, et al. Influence of non-ideal gas characteristics on working fluid properties and thermal cycle of space nuclear power generation system[J]. Energy, 2021, 222:119881.
[1] 马文魁, 杨小勇, 王捷. 空间堆闭式Brayton循环回热器传热-阻力耦合特性[J]. 清华大学学报(自然科学版), 2022, 62(10): 1660-1667.
[2] 王捷, 王宏, 赵钢, 杨小勇, 叶萍, 曲新鹤. 高温气冷堆氦气透平压气机和主氦风机研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 350-360.
[3] 杨谢, 石磊. 空间核反应堆电源闭式Brayton循环热力学分析[J]. 清华大学学报(自然科学版), 2018, 58(9): 821-826.
[4] 米翔, 赵明, 许希斌, 王京. 终端直接通信中基于统计QoS保证的资源优化[J]. 清华大学学报(自然科学版), 2017, 57(12): 1296-1302.
[5] 曲新鹤, 杨小勇, 王捷. 商用高温气冷堆氦气透平循环发电热力学参数分析和优化[J]. 清华大学学报(自然科学版), 2017, 57(10): 1114-1120.
[6] 李骁, 杨小勇, 张佑杰. HTR-10GT充装量调节特性及其机理[J]. 清华大学学报(自然科学版), 2015, 55(9): 1010-1016,1022.
[7] 何强, 张秀军, 肖立民, 周世东. 大规模MIMO系统中多小区导频重用对上行可达速率的影响[J]. 清华大学学报(自然科学版), 2015, 55(5): 526-531.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn