Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (12): 2019-2032    DOI: 10.16511/j.cnki.qhdxxb.2023.25.039
  热能工程 本期目录 | 过刊浏览 | 高级检索 |
面向盐穴大规模储氢商业模式的副产氢供应链管理决策
曹仟妮1, 贾孟硕2, 李博达1, 沈沉1, 薛小代1
1. 清华大学 电机工程与应用电子技术系, 北京 100084, 中国;
2. 苏黎世联邦理工学院 电力系统实验室, 苏黎世 8092, 瑞士
Decisions of a byproduct hydrogen supply chain for a business model of large-scale hydrogen storage
CAO Qianni1, JIA Mengshuo2, LI Boda1, SHEN Chen1, XUE Xiaodai1
1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
2. Power System Lab, ETH Zurich, Zurich 8092, Swiss
全文: PDF(13735 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 在“双碳”背景下,氢能的利用成为解决能源供应并降低温室气体排放总量的措施之一。工业副产氢是一类来源广泛、生产成本低廉且潜在市场可观的氢气。然而,大规模存储设施和相应物流供应链缺乏,终端市场开拓不足,阻碍了工业副产氢的有效利用。该文在氢气可大规模存储的背景下,以盐穴收储化工厂副产氢为商业模式,研究了该商业模式下化工厂和盐穴的供应链管理决策。通过对盐穴储氢量变化、盐穴-化工厂氢气交换的动态过程等详细建模,将供应链管理决策过程整合成一个混合整数非线性优化问题。针对所提优化问题的特点,结合遗传算法和线性规划商业求解器得到最优解;通过实例分析了供应链管理决策优化带来的经济效益及其对参数的灵敏度,得出了产量和运输距离如何影响化工厂运输路径和运输方式的一般性结论,并对市场需求变化对售氢收益的影响进行了研究。研究结果表明:所提模型可为盐穴-化工厂副产氢供应链中各参与者的决策提供依据,所提商业模式可为化工厂和盐穴提供新的收入来源,并能减少工业废气排放,提高资源利用率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹仟妮
贾孟硕
李博达
沈沉
薛小代
关键词 工业副产氢盐穴商业模式供应链    
Abstract:[Objective] In the context of carbon peak and carbon neutralization, hydrogen utilization becomes a promising measure to solve the energy shortage and reduce total greenhouse gas emissions. Commonly produced during many industrial processes, byproduct hydrogen acts as a hydrogen source that is widely available, cheaply produced, and sufficiently clean, thereby having a large potential market. However, the lack of large-scale storage, corresponding logistics supply chains, and untapped markets hinder the further use of byproduct hydrogen.[Methods] Given the low cost of byproduct hydrogen and the need for large-scale hydrogen storage, this paper proposes a business model in which salt caverns purchase byproduct hydrogen from chemical plants. The decision-making process of chemical plants and salt caverns is modeled and studied as a mixed-integer nonlinear optimization problem. During the planning stage, the proposed model optimizes transportation routes, modes, and hydrogen processing capacity, and during the operation, it optimizes hydrogen processing volume based on electricity price fluctuations to improve the profit of the upstream supply chain. The constraints of the optimization problem in the proposed model include the dynamic process of hydrogen transportation between salt caverns and chemical plants, the fluctuation in market demand with changes in hydrogen pricing, and the state of charge of salt caverns. The objective is to maximize the benefits of salt caverns and chemical plants. Given the characteristics of the optimization problem, this paper combines genetic algorithms and a commercial solver of linear programming to obtain the optimal solution. Finally, an envisioned case is used to study the economic benefits brought about by the optimization of supply chain decision-making and sensitivity analysis.[Results] (1) Different scenarios in the supply chain for hydrogen transportation achieved a net income with room for profit, making the proposed business model viable. (2) The optimization model proposed in this article optimized transportation routes, transportation modes, and hydrogen processing unit capacity during the planning phase. During the operational phase, it optimized the hydrogen processing volume based on electricity price fluctuations, thereby increasing the upstream supply chain benefits of byproduct hydrogen. (3) Sensitivity analysis showed the benefits of joint transportation under changing costs, and there existed an optimal pipeline capacity for a given market demand, beyond which increasing pipeline capacity would not further increase profit. (4) Varying the production scale of hydrogen by chemical plants, transportation distance, and cost showed that small and medium-scale chemical plants were more likely to engage in joint transportation, while large-scale chemical plants tended to transport independently. Increasing transport costs encouraged joint transportation to reduce costs. (5) Modifying the linear demand function parameters for the market showed that increasing demand and reducing price sensitivity increased the profit of the upstream supply chain. Improving hydrogen transportation technology to lower costs also increased profit.[Conclusions] The business model proposed in this paper provides a new source of income for chemical plants and salt caverns, improves resource utilization by reducing industrial exhaust emissions, realizes the rational use of natural resources, and provides a new way to accelerate the energy transition.
Key wordsbyproduct hydrogen    salt cavern    business model    supply chain
收稿日期: 2022-12-05      出版日期: 2023-11-06
基金资助:青海省重点研发与转化计划项目(2021-GX-109)
通讯作者: 沈沉,教授,E-mail:shenchen@tsinghua.edu.cn     E-mail: shenchen@tsinghua.edu.cn
作者简介: 曹仟妮(1997—),女,博士研究生。
引用本文:   
曹仟妮, 贾孟硕, 李博达, 沈沉, 薛小代. 面向盐穴大规模储氢商业模式的副产氢供应链管理决策[J]. 清华大学学报(自然科学版), 2023, 63(12): 2019-2032.
CAO Qianni, JIA Mengshuo, LI Boda, SHEN Chen, XUE Xiaodai. Decisions of a byproduct hydrogen supply chain for a business model of large-scale hydrogen storage. Journal of Tsinghua University(Science and Technology), 2023, 63(12): 2019-2032.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.25.039  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I12/2019
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 中国储能网新闻中心.工业副产氢的提纯难点分析[N/OL].(2020-03-04)[2022-06-08]. http://www.escn.com.cn/news/show-817477.html. China Energy Storage Network News Center. Analysis of purification difficulties of industrial byproduct hydrogen[N/OL].(2020-03-04)[2022-06-08]. http://www.escn.com.cn/news/show-817477.html.(in Chinese)
[2] CAMPANARI S, GUANDALINI G. Fuel cells:Opportunities and challenges[J]. Studies in Surface Science and Catalysis, 2020, 179:335-358.
[3] CAGLAYAN D G, WEBER N, HEINRICHS H U, et al. Technical potential of salt caverns for hydrogen storage in Europe[J]. International Journal of Hydrogen Energy, 2020, 45(11):6793-6805.
[4] STONE H B J, VELDHUIS I, RICHARDSON R N. Underground hydrogen storage in the UK[J]. Geological Society, London, Special Publications, 2009, 313(1):217-226.
[5] 单彤文,宋鹏飞,侯建国,等. LNG产业视角下不同天然气制氢模式的终端氢气成本分析[J].天然气化工-C1化学与化工, 2020, 45(2):129-134. SHAN T W, SONG P F, HOU J G, et al. Cost analysis of hydrogen produced from different modes of natural gas to hydrogen:From the perspective of LNG industry[J]. Natural Gas Chemicals Industry, 2020, 45(2):129-134.(in Chinese)
[6] HAN J H, RYU J H, LEE I B. Modeling the operation of hydrogen supply networks considering facility location[J]. International Journal of Hydrogen Energy, 2012, 37(6):5328-5346.
[7] QUARTON C J, SAMSATLI S. The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy:Insights from integrated value chain optimisation[J]. Applied Energy, 2020, 257:113936.
[8] WOO Y B, KIM B S. A genetic algorithm-based matheuristic for hydrogen supply chain network problem with two transportation modes and replenishment cycles[J]. Computers&Industrial Engineering, 2019, 127:981-997.
[9] GUO Z J, WEI W, CHEN L J, et al. Equilibrium model of a regional hydrogen market with renewable energy based suppliers and transportation costs[J]. Energy, 2021, 220:119608.
[10] ANL. Hydrogen delivery scenario analysis model (HDSAM)[EB/OL].(2021-06-01)[2022-06-08]. https://hdsam.es.anl.gov/index.php?content=hdsam.
[11] YÁÑEZ M, ORTIZ A, BRUNAUD B, et al. Contribution of upcycling surplus hydrogen to design a sustainable supply chain:The case study of Northern Spain[J]. Applied Energy, 2018, 231:777-787.
[1] 唐文哲, 雷振, 王姝力, 谢坤, 张清振. 国际工程EPC项目采购集成管理[J]. 清华大学学报(自然科学版), 2017, 57(8): 838-844.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn