Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (5): 714-722    DOI: 10.16511/j.cnki.qhdxxb.2023.26.003
  过程系统工程 本期目录 | 过刊浏览 | 高级检索 |
丙烯/丙烷在分子筛上吸附热力学的Monte Carlo模拟
赵丽1,2,3, 何畅1,2,3, 舒逸聃1,2,3, 陈清林1,2,3, 张冰剑1,2,3
1. 中山大学 材料科学与工程学院, 广州 510275;
2. 广东省石化节能工程技术研究中心, 广州 519082;
3. 中山大学 广东省低碳化学与过程节能重点实验室, 广州 510006
Monte Carlo simulation of propylene/propane adsorption thermodynamics on molecular sieves
ZHAO Li1,2,3, HE Chang1,2,3, SHU Yidan1,2,3, CHEN Qinglin1,2,3, ZHANG Bingjian1,2,3
1. School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;
2. Guangdong Engineering Centre for Petrochemical Energy Conservation, Guangzhou 519028, China;
3. The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510006, China.
全文: PDF(4794 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 运用Monte Carlo方法,模拟了300 K、101 kPa条件下丙烯(C3H6)和丙烷(C3H8)单组分以及二元混合组分气体在DD3R、ITQ-32、Si-CHA、Si-SAS、ITQ-12和ITQ-3共6种纯硅分子筛上的吸附过程。Si-CHA和Si-SAS分子筛对C3H6和C3H8单组分气体的吸附量较大。6种分子筛在300 K时的吸附等温线均属于Ⅰ类Dubinin-Radushkevich (D-R)型,揭示了吸附质在微孔内发生体积填充的过程,Si-SAS分子筛对C3H6的吸附量随温度升高而降低。Si-SAS分子筛对C3H6/C3H8二元混合物的C3H6吸附量为2.26 mmol/g,选择性为3.94,是分离二者的最佳吸附剂,进一步发现分子筛的选择性与等量吸附热差值ΔQst及C3H6吸附量与分子筛孔体积之间存在正相关关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵丽
何畅
舒逸聃
陈清林
张冰剑
关键词 丙烯/丙烷分子筛吸附Monte Carlo模拟    
Abstract:The separation of propylene (C3H6) and propane (C3H8) is crucial in the chemical industry. Compared with the existing distillation technology, adsorption separation technology saves a remarkable amount of energy and has recently attracted much attention. Furthermore, molecular sieves with uniform channels are promising for separating olefin and alkane mixtures. Thus, considering the convenience, separation speed, and reliability, molecular simulations can provide microscopic information that is difficult to obtain using conventional experiments and play a key role in adsorption material screening. This study systematically studied the adsorption of C3H6 and C3H8 and their binary mixtures using DD3R, ITQ-32, Si-CHA, Si-SAS, ITQ-12, and ITQ-3 molecular sieves to discover potential adsorbents for separating C3H6/C3H8binary mixtures. In this study, COMPASS, CVFF, and universal force fields are selected to optimize C3H6 and C3H8, respectively; furthermore, the accuracy of the force fields is verified using the charge distribution. Grand canonical Monte Carlo (GCMC) simulations are used to simulate the adsorption of C3H6 and C3H8 on six molecular sieves with 8-ring channels. The GCMC simulations are run for 1.1×107 cycles, with 1×106 cycles for equilibration and the remaining cycles for ensemble average. To explore the adsorption properties of C3H6 and C3H8, their adsorption capacities and isosteric adsorption heats on six molecular sieves are simulated at 300 K and 101 kPa, respectively. Since an adsorption isotherm can reflect the adsorbate-adsorbent interaction, the adsorption isotherm of C3H6 and C3H8on six molecular sieves at 300 K and 1-101 kPa are simulated. Moreover, the Langmuir, Freundlich, Dubbinin-Radushkevich(D-R), and Temkin models are used to fit the adsorption isotherms and explore the adsorption mechanism. The adsorption isotherms of C3H6 and C3H8 on Si-SAS at 250, 270, 290, 300, 310, and 330 K are simulated to examine the temperature effect. The adsorption capacities and isosteric adsorption heat of C3H6/C3H8 binary mixtures at 300 K and 101 kPa are simulated, and the selectivity is determined to find excellent adsorbents to separate these mixtures. The relationships between equilibrium selectivity and the difference in isosteric adsorption heat ΔQst, as well as the adsorption capacity of C3H6 and total pore volume, are further investigated. The simulation results revealed that:(1) the adsorption capacities of C3H6 and C3H8 on Si-CHA and Si-SAS molecular sieves were high. (2) Type-Ⅰ D-R adsorption isotherms were regressed well for the adsorption of C3H6 and C3H8 at 300 K. The adsorption capacity of the Si-SAS molecular sieve for C3H6 decreased with increasing temperature. (3) Si-SAS had an adsorption capacity of 2.26 mmol/g for C3H6 in binary mixtures, and the selectivity was 3.94, thus making it the best adsorbent for separating the mixture. (4) A positive correlation was observed between the equilibrium selectivity and ΔQst as well as the adsorption capacity of C3H6 and total pore volume. A systematic study on the adsorption of C3H6 and C3H8 at six molecular sieves provides a reference for selecting candidate adsorbents for separating C3H6/C3H8 mixtures, thus greatly expediting the search for optimal adsorbents. The positive correlation between selectivity and ΔQst, as well as the adsorption capacity of C3H6 and total pore volume, provides a theoretical basis for designing and developing excellent adsorbents for C3H6/C3H8 separation.
Key wordspropylene/propane    molecular sieve    adsorption    Monte Carlo simulation
收稿日期: 2022-09-14      出版日期: 2023-04-23
基金资助:国家自然科学基金资助项目(21978330)
通讯作者: 张冰剑,教授,E-mail:zhbingj@mail.sysu.edu.cn      E-mail: zhbingj@mail.sysu.edu.cn
作者简介: 赵丽(1993—),女,博士研究生。
引用本文:   
赵丽, 何畅, 舒逸聃, 陈清林, 张冰剑. 丙烯/丙烷在分子筛上吸附热力学的Monte Carlo模拟[J]. 清华大学学报(自然科学版), 2023, 63(5): 714-722.
ZHAO Li, HE Chang, SHU Yidan, CHEN Qinglin, ZHANG Bingjian. Monte Carlo simulation of propylene/propane adsorption thermodynamics on molecular sieves. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 714-722.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.003  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I5/714
  
  
  
  
  
  
  
  
  
  
  
  
[1] PLAZA M G, FERREIRA A F P, SANTOS J C, et al. Propane/propylene separation by adsorption using shaped copper trimesate MOF[J]. Microporous and Mesoporous Materials, 2012, 157:101-111.
[2] BAO Z B, ALNEMRAT S, YU L, et al. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework[J]. Langmuir, 2011, 27(22):13554-13562.
[3] 肖永厚, 周梦雪, 白腾飞, 等. 丙烯在X型分子筛上吸附热力学的Monte Carlo模拟[J]. 石油化工, 2018, 47(5):420-425. XIAO Y H, ZHOU M X, BAI T F, et al. Monte Carlo simulation for thermodynamics of propylene adsorption on X-type molecular sieves[J]. Petrochemical Technology, 2018, 47(5):420-425. (in Chinese)
[4] LEE M J, HAMID M R A, LEE J, et al. Ultrathin zeolitic-imidazolate framework ZIF-8membranes on polymeric hollow fibers for propylene/propane separation[J]. Journal of Membrane Science, 2018, 559:28-34.
[5] SAKAI M, SASAKI Y, TOMONO T, et al. Olefin selective Ag-exchanged X-type zeolite membrane forpropylene/propane and ethylene/ethane separation[J]. ACS Applied Materials & Interfaces, 2019, 11(4):4145-4151.
[6] NARIN G, MARTINS V F D, CAMPO M, et al. Light olefins/paraffins separation with 13X zeolite binderless beads[J]. Separation and Purification Technology, 2014, 133:452-475.
[7] WU Y Q, WECKHUYSEN B M. Separation and purification of hydrocarbons with porous materials[J]. Angewandte Chemie International Edition, 2021, 60(35):18930-18949.
[8] LI K H, OLSON D H, SEIDEL J, et al. Zeolitic imidazolate frameworks for kinetic separation of propane and propene[J]. Journal of the American Chemical Society, 2009, 131(30):10368-10369.
[9] ZHOU S, WEI Y Y, LI L B, et al. Paralyzed membrane:Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Science Advances, 2018, 4(10):eaau1393.
[10] LI L B, DUAN Y F, LIAO S W, et al. Adsorption and separation of propane/propylene on various ZIF-8 polymorphs:Insights from GCMC simulations and the ideal adsorbed solution theory (IAST)[J]. Chemical Engineering Journal, 2020, 386:123945.
[11] HE C H, WANG Y, CHEN Y, et al. Modification of the pore environment in UiO-type metal-organic framework toward boosting the separation of propane/propylene[J]. Chemical Engineering Journal, 2021, 403:126428.
[12] YANG S Q, SUN F Z, KRISHNA R, et al. Propane-trapping ultramicroporous metal-organic framework in the low-pressure area toward the purification of propylene[J]. ACS Applied Materials & Interfaces, 2021, 13(30):35990-35996.
[13] KIM J, LIN L C, MARTIN R L, et al. Large-scale computational screening of zeolites for ethane/ethene separation[J]. Langmuir, 2012, 28(32):11914-11919.
[14] QIAO Z W, XU Q S, CHEETHAM A K, et al. High-throughput computational screening of metal-organic frameworks for thiol capture[J]. The Journal of Physical Chemistry C, 2017, 121(40):22208-22215.
[15] QIAO Z W, XU Q S, JIANG J W. Computational screening of hydrophobic metal-organic frameworks for the separation of H2S and CO2 from natural gas[J]. Journal of Materials Chemistry A, 2018, 6(39):18898-18905.
[16] TANG H J, JIANG J W. In silico screening and design strategies of ethane-selective metal-organic frameworks for ethane/ethylene separation[J]. AIChE Journal, 2021, 67(3):e17025.
[17] YEO B C, KIM D, KIM H, et al. High-throughput screening to investigate the relationship between the selectivity and working capacity of porous materials forpropylene/propane adsorptive separation[J]. The Journal of Physical Chemistry C, 2016, 120(42):24224-24230.
[18] MAGHSOUDI H, ABDI H, AIDANI A. Temperature-and pressure-dependent adsorption equilibria and diffusivities of propylene and propane in pure-silica Si-CHA zeolite[J]. Industrial & Engineering Chemistry Research, 2020, 59(4):1682-1692.
[19] KHALIGHI M, CHEN Y F, FAROOQ S, et al. Propylene/propane separation using SiCHA[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3877-3892.
[20] OLSON D H, YANG X B, CAMBLOR M A. ITQ-12:A zeolite having temperature dependent adsorption selectivity and potential for propene separation[J]. The Journal of Physical Chemistry B, 2004, 108(30):11044-11048.
[21] PALOMINO M, CANTÍN A, CORMA A, et al. Pure silica ITQ-32[JP+7]zeolite allows separation of linear olefins from paraffins[J]. Chemical Communications, 2007(12):1233-1235.
[22] 肖永厚, 陶伟川, 刘苏, 等. 丙烯在离子交换NaX分子筛上的吸附热力学研究[J]. 石油化工, 2010, 39(S1):154-156. XIAO Y H, TAO W C, LIU S, et al. Adsorption thermodynamics of propylene on ion exchange NaX molecular sieves.[J]. Petrochemical Technology, 2010, 39(S1):154-156. (in Chinese)
[23] JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45):11225-11236.
[24] PHAM T D, LOBO R F. Adsorption equilibria of CO2 and small hydrocarbons in AEI-, CHA-, STT-, and RRO-typesiliceous zeolites[J]. Microporous and Mesoporous Materials, 2016, 236:100-108.
[25] ZHU W, KAPTEIJN F, MOULIJN J A. Shape selectivity in the adsorption of propane/propene on the all-silica DD3R[J]. Chemical Communications, 1999(24):2453-2454.
[26] LIU B, SMIT B, REY F, et al. A new united atom force field for adsorption of alkenes in zeolites[J]. The Journal of Physical Chemistry C, 2008, 112(7):2492-2498.
[27] GUTIÉRREZ-SEVILLANO J J, DUBBELDAM D, REY F, et al. Analysis of the ITQ-12 zeolite performance inpropane-propylene separations using a combination of experiments and molecular simulations[J]. The Journal of Physical Chemistry C, 2010, 114(35):14907-14914.
[28] OLSON D H, CAMBLOR M A, VILLAESCUSA L A, et al. Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58[J]. Microporous and Mesoporous Materials, 2004, 67(1):27-33.
[29] MAGHSOUDI H. Equilibrium adsorption analysis of microporous adsorbents in propene/propane binary mixture separation[J]. Adsorption, 2015, 21(6):547-556.
[1] 徐鹏飞, 陈梅雅, 开艳, 王子鹏, 李新宇, 万刚, 王延杰. 大型水电站坝体检测水下机器人研究进展[J]. 清华大学学报(自然科学版), 2023, 63(7): 1032-1040.
[2] 王喆鑫, 刘辉, 程李, 高丽蕾, 吕振雷, 江年铭, 何作祥, 刘亚强. 基于Monte Carlo模拟的全身骨扫描SPECT专用准直器设计[J]. 清华大学学报(自然科学版), 2023, 63(5): 811-817.
[3] 李爽, 史翊翔, 蔡宁生. 面向能源转型的化石能源与可再生能源制氢技术进展[J]. 清华大学学报(自然科学版), 2022, 62(4): 655-662.
[4] 刘泽宇, 谢忆, 王一凡, 胡铜洋, 叶钢, 陈靖. 海水提铀材料研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 279-301.
[5] 薛彦广, 邓晓梅, 苏贵良. 基于多属性逆向拍卖的工程担保分保竞拍[J]. 清华大学学报(自然科学版), 2018, 58(9): 841-848.
[6] 冯珂, 王守清, 薛彦广. 基于多方满意的PPP项目股权配置优化研究[J]. 清华大学学报(自然科学版), 2017, 57(4): 376-381.
[7] 龙斌, 李君利, 王群书, 冯淑娟, 周国庆, 冯天成, 张洋, 徐明, 田言杰, 马怀成. 沸石分子筛的CO2除杂性能[J]. 清华大学学报(自然科学版), 2016, 56(8): 824-829.
[8] 邓春, 周业扬, 江苇, 冯霄. 耦合变压吸附简化模型的提纯回用氢网络协调优化[J]. 清华大学学报(自然科学版), 2016, 56(7): 735-742.
[9] 邱彤, 陈金财, 方舟. 基于结构导向集总的石油馏分分子重构模型[J]. 清华大学学报(自然科学版), 2016, 56(4): 424-429.
[10] 于静, 王建龙, 蒋翼周. 活性炭吸附放射性废水中U(Ⅵ)的特性研究[J]. 清华大学学报(自然科学版), 2016, 56(3): 312-317.
[11] 陈宜正, 李君利, 邱睿, 武祯, 康玺. 医用加速器场所中子和感生γ光子剂量当量的计算分析[J]. 清华大学学报(自然科学版), 2016, 56(12): 1284-1289.
[12] 杨少霞, 章晶晶, 杨宏伟, 张莉, 高攀. 离子交换树脂吸附氨氮的性能[J]. 清华大学学报(自然科学版), 2015, 55(6): 660-665.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn