Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (11): 1719-1728    DOI: 10.16511/j.cnki.qhdxxb.2023.26.020
  低碳交通与绿色发展 本期目录 | 过刊浏览 | 高级检索 |
基于信令数据的中等城市绿色出行政策建议
吕远, 葛浩菁, 焦朋朋
北京建筑大学 通用航空技术北京实验室, 北京 100044
Policy recommendations for green travel in medium cities based on signaling data
LÜ Yuan, GE Haojing, JIAO Pengpeng
Beijing Laboratory of General Aviation Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
全文: PDF(9485 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 该文提出了一种基于信令数据识别交通方式并制定出行政策的方法,旨在促进中等城市的绿色、可持续发展。首先,针对中等城市信令数据的特点,结合基站定位原则和信息报送机制等因素,确定出行速度区间;然后,使用地图API (application programming interface)获取交通方式的速度,并通过调整速度区间和基于出行时间可靠度感知的Logit模型,完成交通方式的识别;最后,选取荆州市中心城区作为研究实例,对空气污染物排放量等数据进行验证。综合考虑扩展时空信息、路网交通状态和出行策略等方面,该文提出的方法能够有效地完成交通方式识别。此外,根据污染物排放可视化和居民出行情况,讨论了出行政策。研究结果表明:需加强学区和医院区的交通组织管理,以减少机动车在低速行驶阶段的污染物排放;在高峰时段,传统公交吸引力不足,应开设需求响应式公交;另外,可采用硬件与管理相结合的方式,鼓励特定人群使用非机动车。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 交通方式信令数据绿色出行中等城市空气污染物排放    
Abstract:[Objective] Urban traffic is a vital factor in determining urban competitiveness, which is an essential aspect of determining urban vitality and crucial for improving urban livability. With the increasing demand for urban motorized travel, traffic conflicts and low road efficiency have become more evident in the central parts of cities. These issues hinder the successful development of the city and affect the quality of life of the residents. By further elucidating and analyzing the travel characteristics of different regions, we can implement targeted strategies to improve traffic conflicts, maintain road order, and enhance road efficiency and safety. [Methods] This paper proposes a transportation mode detection method based on signaling data to formulate travel policies to help mid-sized cities for realizing green and sustainable development. The proposed method considers the characteristics of signaling data in mid-sized cities. This paper analyzes the possible range of the traveling time and distance. Moreover, when exploring travel characteristics, the proposed method does not directly trust the signaling timestamp and does not directly use the Euclidean distance between base stations. It neither uses the shortest distance in the road network nor the road network distance based on a certain mapping rule. The traveling speed range is determined according to the base station positioning principle and information reporting mechanism. The map application programming interface (API) is used to obtain the speed of different traffic modes, accurately achieve the travel characteristics of the residents, and formulate targeted policies. When using the map API, the travel strategy of residents, traffic flow information, and network structure are considered. The detection is completed by the speed interval adjustment and the Logit model based on the travel time reliability perception. The limitations of positioning accuracy and time granularity make it a challenging task to mine and verify the characteristics. However, introducing multisource data when the standard dataset has not yet been constructed helps address this issue. [Results] The study used air pollutant emission data and intersection flow data to verify the mode detection results of large-scale areas rather than using only the official mode share statistics for verification. Then the transport modes detection method was used to analyze the travel structure of the central area in Jingzhou. The method could effectively detect transportation modes by extending temporal, and spatial information by considering the road network, and travel strategies of the residents. [Conclusions] The results demonstrate that during peak hours, the high traffic demand of schools and the concentrated parking contradiction around hospitals aggravate traffic congestion. It is necessary to strengthen the traffic organization and management of the academic and medical circles to reduce emissions in the low-speed driving stage of motor vehicles. The attraction of traditional public transportation during peak hours is insufficient, and the local conditions for opening demand-responsive buses are available. The inevitable increase in population will attract more residents who initially used individualized motorized traffic. People have a clear preference for transportation when the origin and destination are the same (interval distance of approximately 3 km) and the travel time of individual motorized travel and cycling is close. Appropriate sharing of nonmotor vehicles, along with traffic organization and management, can encourage specific groups to use nonmotor vehicles.
Key wordstransport mode    signaling data    green travel    medium cities    air pollutant emission
收稿日期: 2022-11-13      出版日期: 2023-10-16
基金资助:国家自然科学基金资助项目(52172301);北京社会科学基金资助项目(21GLA010);国家社科基金重大项目(21ZDA029)
通讯作者: 焦朋朋,教授,E-mail:jiaopengpeng@bucea.edu.cn     E-mail: jiaopengpeng@bucea.edu.cn
引用本文:   
吕远, 葛浩菁, 焦朋朋. 基于信令数据的中等城市绿色出行政策建议[J]. 清华大学学报(自然科学版), 2023, 63(11): 1719-1728.
LÜ Yuan, GE Haojing, JIAO Pengpeng. Policy recommendations for green travel in medium cities based on signaling data. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1719-1728.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.020  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I11/1719
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] HUANG H S, CHENG Y, WEIBEL R. Transport mode detection based on mobile phone network data:A systematic review[J]. Transportation Research Part C:Emerging Technologies, 2019, 101(4):297-312.
[2] ZHU L, YU F R, WANG Y G, et al. Big data analytics in intelligent transportation systems:A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(1):383-398.
[3] GADZINŃSKI J. Perspectives of the use of smartphones in travel behaviour studies:Findings from a literature review and a pilot study[J]. Transportation Research Part C:Emerging Technologies, 2018, 88(5):74-86.
[4] BURKHARD O, BECKER H, WEIBEL R, et al. On the requirements on spatial accuracy and sampling rate for transport mode detection in view of a shift to passive signalling data[J]. Transportation Research Part C:Emerging Technologies, 2020, 114(5):99-117.
[5] QU Y C, GONG H, WANG P. Transportation mode split with mobile phone data[C]//Proceedings of 2015 IEEE 18th International Conference on Intelligent Transportation Systems. Gran Canaria, Spain:IEEE, 2015:285-289.
[6] YAMADA Y, UCHIYAMA A, HIROMORI A, et al. Travel estimation using control signal records in cellular networks and geographical information[C]//Proceedings of 20169th IFIP Wireless and Mobile Networking Conference. Colmar, France:IEEE, 2016:138-144.
[7] PHITHAKKITNUKOON S, SUKHVIBUL T, DEMISSIE M, et al. Inferring social influence in transport mode choice using mobile phone data[J]. EPJ Data Science, 2017, 6(1):11.
[8] PENG Z H, BAI G K, WU H, et al. Travel mode recognition of urban residents using mobile phone data and map API[J]. Environment and Planning B:Urban Analytics and City Science, 2021, 48(9):2574-2589.
[9] GU M C, SUN S, JIAN F, et al. Analysis of changes in intercity highway traffic travel patterns under the impact of COVID-19[J]. Journal of Advanced Transportation, 2021, 2021(1):7709555.
[10] DANAFAR S, PIORKOWSKI M, KRYSCZCUK K. Bayesian framework for mobility pattern discovery using mobile network events[C]//Proceedings of 201725th European Signal Processing Conference. Kos, Greece:IEEE, 2017:1070-1074.
[11] SUN H D, CHEN Y Y, WANG Y, et al. Trip purpose inference for tourists by machine learning approaches based on mobile signaling data[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(2):923-937.
[12] CHEN J T, XIONG C, CAI M. A travel mode identification framework based on cellular signaling data[J]. Mobile Information Systems, 2022, 4:1-19.
[13] CHEN X X, WAN X, LI Q, et al. Trip-chain-based travel-mode-shares-driven framework using cellular signaling data and web-based mapping service data[J]. Transportation Research Record:Journal of the Transportation Research Board, 2019, 2673(3):51-64.
[14] ZHAO P J, LIU D, YU Z, et al. Long commutes and transport inequity in China's growing megacity:New evidence from Beijing using mobile phone data[J]. Travel Behaviour and Society, 2020, 20(7):248-263.
[15] AGUILÉRA V, ALLIO S, BENEZECH V, et al. Using cell phone data to measure quality of service and passenger flows of Paris transit system[J]. Transportation Research Part C:Emerging Technologies, 2014, 43:198-211.
[16] 朱顺应,邓爽,王红,等.具有模糊特性变量的出行方式预测Logit模型[J].交通运输工程学报, 2013, 13(3):71-78. ZHU S Y, DENG S, WANG H, et al. Predictive LOGIT model of trip mode with fuzzy attribute variables[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3):71-78.(in Chinese)
[17] 荆州市人民政府.荆州市城市综合交通体系规划(2015-2030)[R/OL].(2015-09-25)[2022-09-17]. http://www.jingzhou.gov.cn. Jingzhou Municipal People's Government. Comprehensive transportation system planning of Jingzhou city (2015-2030)[R/OL].(2015-09-25)[2022-09-17]. http://www.jingzhou.gov.cn.(in Chinese)
[18] ZHAI Z Q, SONG G H, LIU Y, et al. Characteristics of operating mode distributions of light duty vehicles by road type, average speed, and driver type for estimating on-road emissions:Case study of Beijing[J]. Journal of Intelligent Transportation Systems, 2019, 23(2):191-202.
[19] 生态环境部.关于发布《大气可吸入颗粒物一次源排放清单编制技术指南(试行)》等5项技术指南的公告[EB/OL].(2014-12-31)[2022-09-17]. https://www.mee.gov.cn/gkml/hbb/bgg/201501/t20150107_293955.htm. Ministry of Ecological Environment of the People's Republic of China. Technical guidelines for the preparation of air pollutant emission inventory for road vehicles (trial)[EB/OL].(2014-12-31)[2022-09-17]. https://www.mee.gov.cn/gkml/hbb/bgg/201501/t20150107_293955.htm.(in Chinese)
[20] 荆州市生态环境局. 2020年荆州市生态环境统计公报[R/OL].(2022-04-25)[2022-09-17]. http://sthjj.jingzhou.gov.cn/fbjd/xxgkml/hjgh/202204/t20220425_723263.shtml. Jingzhou Municipal Ecological Environment Bureau. 2020 Jingzhou city ecological environment statistical bulletin[R/OL].(2022-04-25)[2022-09-17]. http://sthjj.jingzhou.gov.cn/fbjd/xxgkml/hjgh/202204/t20220425_723263.shtml.(in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn