Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (11): 1833-1843    DOI: 10.16511/j.cnki.qhdxxb.2023.26.030
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
热重法测量极低饱和蒸气压的方法优化
李忠炜, 李肖飞, 唐祚洲, 徐文婷, 宋蔷
清华大学 热科学与动力工程教育部重点实验室, 北京 100084
Optimization of thermogravimetric method for measuring very low saturation vapor pressure
LI Zhongwei, LI Xiaofei, Tang Zuozhou, XU Wenting, SONG Qiang
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
全文: PDF(9925 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 基于Langmuir方程的热重分析法是测量物质极低饱和蒸气压的常用方法。有2个关键因素可用于确保测量准确:蒸发速率与饱和蒸气压的线性关系及不同物质的校准系数k的一致性。对控制方程的无量纲分析表明,蒸发过程由Reynolds数(Re)、Peclet数(Pe)和坩埚表面样品蒸气质量分数的无量纲形式(wi)决定。由无量纲量表示的蒸发速率关系式表明:蒸发速率与饱和蒸气压具有非线性关系,可用于定量描述k的变化规律。当物质的摩尔质量和饱和蒸气压较小时,饱和蒸气压与蒸发速率的关系式可近似为线性。待测物质的摩尔质量和扩散系数与校准物质的摩尔质量和扩散系数越接近,2种物质的校准系数的差越小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李忠炜
李肖飞
唐祚洲
徐文婷
宋蔷
关键词 热重分析饱和蒸气压蒸发速率校准系数    
Abstract:[Objective] Vapor pressure is a fundamental thermodynamic property, the measurement of which is particularly important. Coal-fired pollution control research needs basic data on the vapor pressure of heavy metals, but it is very low and is difficult to measure. A common method for measuring very low vapor pressure is thermogravimetric analysis, wherein vapor pressure is estimated using the evaporation rate. The key factors affecting the measurement accuracy are the conditions under which the linear relationship between the vapor pressure and the evaporation rate is established and the similarity of the calibration constants k of different substances. [Methods] Taking the TA Q500 thermogravimetric analyzer as an example, this paper establishes a mathematical model for isothermal evaporation in a thermogravimetric analyzer. The thermogravimetric analyzer’s flow field and evaporation process are analyzed via computational fluid dynamics (CFD) method. Numerical simulations are conducted for six organic substances and 160 model substances under various temperature and carrier gas flow conditions. The independence of the grids used in the numerical simulations is verified through examination of the x-direction velocities, y-direction velocities, and mass fraction distributions for different numbers of grids. The reliability of the calculated results is verified using the experimental results obtained for the vapor pressure of benzoic acid. [Results] A comparison of the mass distribution diagrams of organic substances revealed that the evaporative mass transfer in the thermogravimetric analyzer was due to the combined effect of molecular diffusion and convective transport. The evaporation process, which was typically analyzed using the Langmuir equation, was based on molecular diffusion, which meant that the Langmuir equation was not be applicable to describe the evaporation process inside the thermogravimetric analyzer. The experimental conditions (carrier gas flow rate and temperature) and substance properties (molar mass, vapor pressure, and diffusion coefficient) would affect the evaporation and mass transfer of the substance and further affected the calibration constant k. A numerical simulation of the isothermal evaporation process of 160 model substances revealed that the difference in the physical properties of these substances could result in significant differences in k. k increased with decreasing molar mass and diffusion coefficient and increasing vapor pressure. The dimensionless analysis of the governing equations showed that the evaporation process was determined by the dimensionless quantities Re(Reynolds number), Pe(Peclet number), and wi(the dimensionless form of the sample vapor mass fraction on the crucible surface). Through the dimensionless analysis of the governing equations, the nonlinear relationship between evaporation rate and vapor pressure was obtained via fitting. When the molar mass and vapor pressure of the substance were small, the relationship between the vapor pressure and the evaporation rate was more linear. The deviations obtained from the different calibration-constant calculation methods were compared. The results confirmed that the calibration constant k was related to the vapor pressure. The results also proved that the key influencing parameters obtained through the dimensionless analysis of the governing equation were reliable. The influence of physical properties on pressure measurement deviation was analyzed, and the results revealed that the closer the molar mass and diffusion coefficient values between the substance to be measured and the calibration substance, the smaller the difference in k between the two substances. [Conclusions] Based on the analysis of the results, it is found that: The relationship between evaporation rate and vapor pressure is approximately linear only when the molar mass and vapor pressure of the substance are small. When choosing a calibration substance, in order to reduce the measurement deviation of vapor pressure, the substance with the diffusion coefficient and molar mass of the substance to be measured should be selected as close as possible.
Key wordsthermogravimetric analysis    saturation vapor pressure    evaporation rate    calibration constant[ZK)]
收稿日期: 2022-10-27      出版日期: 2023-10-16
基金资助:国家自然科学基金面上项目(51976103)
通讯作者: 宋蔷,副教授。E-mail:qsong@tsinghua.edu.cn     E-mail: qsong@tsinghua.edu.cn
引用本文:   
李忠炜, 李肖飞, 唐祚洲, 徐文婷, 宋蔷. 热重法测量极低饱和蒸气压的方法优化[J]. 清华大学学报(自然科学版), 2023, 63(11): 1833-1843.
LI Zhongwei, LI Xiaofei, Tang Zuozhou, XU Wenting, SONG Qiang. Optimization of thermogravimetric method for measuring very low saturation vapor pressure. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1833-1843.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.030  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I11/1833
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] XU W T, SONG Q, SONG G C, et al. The vapor pressure of Se and SeO2 measurement using thermogravimetric analysis[J]. Thermochimica Acta, 2020, 683:178480.
[2] LI S H, YANG F F, ZHANG K, et al. Vapor pressure measurements and correlation for trans-1-chloro-3, 3, 3-trifluoroprop-1-ene[J]. Journal of Chemical&Engineering Data, 2019, 64(7):2947-2954.
[3] SITE A D. The vapor pressure of environmentally significant organic chemicals:A review of methods and data at ambient temperature[J]. Journal of Physical and Chemical Reference Data, 1997, 26(1):157-193.
[4] LANGMUIR I. The vapor pressure of metallic tungsten[J]. Physical Review, 1913, 2(5):329-342.
[5] PRICE D M, HAWKINS M. Calorimetry of two disperse dyes using thermogravimetry[J]. Thermochimica Acta, 1998, 315(1):19-24.
[6] PRICE D M. Vapor pressure determination by thermogravimetry[J]. Thermochimica Acta, 2001, 367-368:253-262.
[7] CUDDY M F, PODA A R, CHAPPELL M A. Estimations of vapor pressures by thermogravimetric analysis of the insensitive munitions IMX-101, IMX-104, and individual components[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(2):236-242.
[8] BARRETO GOMES A P, FREIRE F D, SOARES ARAGÃO C F. Determination of vapor pressure curves of warifteine and methylwarifteine by using thermogravimetry[J]. Journal of Thermal Analysis and Calorimetry, 2012, 108(1):249-252.
[9] DE OLIVEIRA C E L, CREMASCO M A. Determination of the vapor pressure of Lippia gracilis Schum essential oil by thermogravimetric analysis[J]. Thermochimica Acta, 2014, 577:1-4.
[10] PHANG P, DOLLIMORE D, EVANS S J. A comparative method for developing vapor pressure curves based on evaporation data obtained from a simultaneous TG-DTA unit[J]. Thermochimica Acta, 2002, 392-393:119-125.
[11] SUROV O V. Thermogravimetric method used to determine the saturated vapor pressure in a wide range of values[J]. Russian Journal of Applied Chemistry, 2009, 82(1):42-46.
[12] RONG Y H, GREGSON C M, PARKER A. Thermogravimetric measurements of liquid vapor pressure[J]. The Journal of Chemical Thermodynamics, 2012, 51:25-30.
[13] BARONTINI F, COZZANI V. Thermogravimetry as a screening tool for the estimation of the vapor pressures of pure compounds[J]. Journal of Thermal Analysis and Calorimetry, 2007, 89(1):309-314.
[14] FOCKE W W. A revised equation for estimating the vapour pressure of low-volatility substances from isothermal TG data[J]. Journal of Thermal Analysis and Calorimetry, 2003, 74(1):97-107.
[15] PIETERSE N, FOCKE W W. Diffusion-controlled evaporation through a stagnant gas:Estimating low vapour pressures from thermogravimetric data[J]. Thermochimica Acta, 2003, 406(1-2):191-198.
[16] PARKER A, BABAS R. Thermogravimetric measurement of evaporation:Data analysis based on the Stefan tube[J]. Thermochimica Acta, 2014, 595:67-73.
[17] ZGHAL I, FARJAS J, CAMPS J, et al. Thermogravimetric measurement of the equilibrium vapour pressure:Application to water and triethanolamine[J]. Thermochimica Acta, 2018, 665:92-101.
[18] SZCZOTOK A M, KJØNIKSEN A L, RODRIGUEZ J F, et al. The accurate diffusive model for predicting the vapor pressure of phase change materials by thermogravimetric analysis[J]. Thermochimica Acta, 2019, 676:64-70.
[19] VLASOV V A. Diffusion-kinetic model of liquid evaporation from a Stefan tube:A solution to the Stefan diffusion problem[J]. International Journal of Heat and Mass Transfer, 2020, 163:120379.
[20] FULLER E N, SCHETTLER P D, GIDDINGS J C. New method for prediction of binary gas-phase diffusion coefficients[J]. Industrial&Engineering Chemistry, 1966, 58(5):18-27.
[21] POLING B E, PRAUSNITZ J M, O'CONNELL J P. Properties of gases and liquids[M]. New York:McGraw-HillEducation, 2001.
[22] TANG M J, SHIRAIWA M, PÖSCHL U, et al. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere:Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations[J]. Atmospheric Chemistry and Physics, 2015, 15(10):5585-5598.
[23] MONTE M J S, SANTOS L M N B F, FULEM M, et al. New static apparatus and vapor pressure of reference materials:Naphthalene, benzoic acid, benzophenone, and ferrocene[J]. Journal of Chemical&Engineering Data, 2006, 51(2):757-766.
[24] 刘光启,马连湘,项曙光.化学化工物性数据手册(有机卷)[M].北京:化学工业出版社, 2013. LIU G Q, MA L X, XIANG S G. Handbook of physical properties for chemistry and chemicals (Organic Volume)[M]. Beijing:Chemical Industry Press, 2013.(in Chinese)
[1] 张佳庆, 过羿, 冯瑞, 李开源, 黄玉彪, 尚峰举. 典型变电站阻燃低压电缆外护套材料火灾条件下热解固气产物特性及反应机理[J]. 清华大学学报(自然科学版), 2022, 62(1): 33-42.
[2] 龙艳秋, 李清海, 周会, 蒙爱红, 张衍国. 可燃固体废弃物热转化特性的基元表征方法[J]. 清华大学学报(自然科学版), 2017, 57(12): 1324-1330.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn