Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (1): 90-98    DOI: 10.16511/j.cnki.qhdxxb.2023.26.037
  动力与能源 本期目录 | 过刊浏览 | 高级检索 |
石云姣, 赵宁波, 郑洪涛
哈尔滨工程大学 动力与能源工程学院, 哈尔滨 150001
Impact of inlet distortion on the flow characteristics of a heavy-duty gas turbine cylinder pressure
SHI Yunjiao, ZHAO Ningbo, ZHENG Hongtao
College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
全文: PDF(12798 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 针对重型燃气轮机的压气机和燃烧室匹配中存在的燃压缸进气流场畸变问题,采用数值模拟方法对燃压缸在不同进口畸变模式、畸变位置和畸变度条件下的流动特性和性能变化规律进行分析。结果表明:进气畸变模式中的周向畸变相比径向畸变会明显削弱燃压缸的整流效果,导致总压损失和畸变度升高;随着径向畸变速度峰值出现位置下移,进口段的气流分离位置后移,出口截面下侧来流高速区面积和速度峰值增加;同种畸变模式下,进口畸变度的增加对流场分布特性影响较小,但会增加总压损失和出口截面畸变度。
E-mail Alert
关键词 重型燃气轮机燃压缸进气畸变数值模拟    
Abstract:[Objective] During the operation of a heavy-duty gas turbine, the flow field at the compressor outlet is impacted by the blade wakes and boundary layers. Consequently, the flow field entering the combustor becomes nonuniform, which can negatively impact the performance of the combustion chamber. Unfortunately, the existing design of combustion chambers often ignores the influence of this nonuniform inlet air, which is inconsistent with the actual operating conditions of a gas turbine, May cause poor uniformity of combustion chamber outlet temperature distribution or an increase in pressure loss. Therefore, we must consider the cylinder pressure as a crucial rectification component within the combustion chamber of a heavy-duty gas turbine. We can use the cylinder pressure to effectively address these issues and enhance the overall performance through performance analysis conducted under distortion conditions.[Methods] In this study, we conducted numerical simulations to investigate the flow characteristics of the cylinder pressure under various inlet distortions as well as the parameter response patterns associated with different distortion modes. The realizable k-ε turbulence model was employed, and a SIMPLE pressure-velocity coupling algorithm was applied. Second-order convergence precision was implemented to ensure accurate calculation of all physical quantities. We compared the calculated results with experimental data to validate the reliability of our numerical simulation method. The agreement between the two confirmed the credibility of our approach. We explored radial distortions at different levels of distortion and positions, as well as circumferential distortions under varying degrees of distortion. Our findings indicated that the appropriate range for inlet distortion degrees was between 0.18 and 0.47.[Results] The inlet distortion of the gas turbine combustion induced a more intricate vortex system within the cylinder pressure and altered the airflow separation position in the inlet section. Both the position and shape of the high-speed region with speeds greater than 80 m/s, were affected upon modifying the inlet distortion mode. Circumferential distortion resulted in the expansion of the high-speed area near the gas turbine combustion chamber flame tube, with a distortion degree approximately twice that of the uniform incoming flow and radial distortion. The rectification effect diminished when the inlet was circumferentially distorted, leading to increased pressure loss. The airflow separation position advanced with the upward movement of the peak position of radial distortion velocity, enlarging the high-speed area beneath the combustion chamber. This caused an increase in the total pressure loss, and the peak distortion value progressed along the path. Additionally, the high-speed area on the upper side of the cylinder pressure outlet diminished, nearly disappearing in the presence of high speed on the inner side under inlet conditions. Within the same distortion mode, augmenting the degree of distortion exerted a minimal impact on the vortex structure and flow field distribution characteristics. However, augmenting the degree of distortion exerted a minimal impact and elevated the maximum airflow velocity within the combustion diffuser, resulting in an increased total pressure loss and outlet distortion.[Conclusions] Both the inlet distortion mode and its degree considerably impact the velocity distribution within the combustion diffuser as well as the structure of the vortex structure. In particular, when circumferential distortion occurs at the inlet, the rectification effect of the diffuser deteriorates. Consequently, we must prioritize the design process of the combustion chamber with regard to the structure's capability to withstand circumferential distortion.
Key wordsheavy-duty gas turbine    cylinder pressure    inlet distortion    numerical simulation
收稿日期: 2022-03-28      出版日期: 2023-11-30
通讯作者: 赵宁波,副教授,     E-mail:
作者简介: 石云姣(1999—),女,博士研究生。
石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
SHI Yunjiao, ZHAO Ningbo, ZHENG Hongtao. Impact of inlet distortion on the flow characteristics of a heavy-duty gas turbine cylinder pressure. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 90-98.
链接本文:  或
[1] SHADOWEN J H, EGAN JR W J. Evaluation of circumferential airflow uniformity entering combustors from compressors. Volume 1:Discussion of data and results[R]. Florida:NASA Lewis Research Center, 1972.
[2] STEVENS S J, HARASGAMA S P, WRAY P. The influence of blade wakes on the performance of combustor shortened prediffusers[J]. Journal of Aircraft, 1984, 21(9):641-648.
[3] SCHULTZ D F, PERKINS P J. Effects of radial and circumferential inlet velocity profile distortions on performance of a short-length double-annular ram-induction combustor[R]. Washington:National Aeronautics and Space Administration, 1972.
[4] LEFEBVRE A H, BALLAL D R. Gas turbine combustion:Alternative fuels and emissions[M]. 3rd ed. Boca Raton:CRC Press, 2010.
[5] 陈曦. 环形燃烧室低排放设计研究[D]. 哈尔滨:哈尔滨工程大学, 2016. CHEN X. Low emission design research of annular combustor[D]. Harbin:Harbin Engineering University, 2016. (in Chinese)
[6] BARKER A G, CARROTTE J F. Influence of compressor exit conditions on combustor annular diffusers, part 1:Diffuser performance[J]. Journal of Propulsion and Power, 2001, 17(3):678-686.
[7] BARKER A G, CARROTTE J F. Influence of compressor exit conditions on combustor annular diffusers part Ⅱ:Flow redistribution[J]. Journal of Propulsion and Power, 2001, 17(3):687-694.
[8] HUMENIK F M. Performance of short length turbojet combustor insensitive to radial distortion of inlet airflow[R]. Washington:National Aeronautics and Space Adminis- tration, 1970.
[9] 梁志鹏, 林宇震, 许全宏, 等. 进口流场畸变对回流燃烧室出口温度分布的影响[J]. 航空动力学报, 2016, 31(5):1142-1148. LIANG Z P, LIN Y Z, XU Q H, et al. Effects of inlet velocity distortion on outlet temperature distribution of a reverse-flow combustor[J]. Journal of Aerospace Power, 2016, 31(5):1142-1148. (in Chinese)
[10] 张漫, 王铮钧, 王晶, 等. 航空发动机内流全场流动的大涡模拟[J]. 航空动力, 2021, 19(2):57-60. ZHANG M, WANG Z J, WANG J, et al. Large eddy simulation on internal flow of aero engine[J]. Aerospace Power, 2021, 19(2):57-60. (in Chinese)
[11] 赵宁波, 梁恩广, 石云姣, 等. 进气畸变对回流燃烧室性能的影响研究[J]. 热能动力工程, 2022, 37(12):104-109. ZHAO N B, LIANG E G, SHI Y J, et al. Effects of inlet flow rate distortion on counterflow combustor performance[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(12):104-109. (in Chinese)
[12] 孔令晗, 张国新, 钱煜平, 等. 进气畸变对燃烧室性能的影响[J]. 航空动力学报, 2018, 33(3):642-648. KONG L H, ZHANG G X, QIAN Y P, et al. Effect of inlet distortion on performance of combustion chamber[J]. Journal of Aerospace Power, 2018, 33(3):642-648. (in Chinese)
[13] 王梅娟, 成胜军, 宋双文, 等. 燃烧室进口流场对某回流燃烧室性能影响的数值计算[J]. 航空动力学报, 2018, 33(6):1281-1289. WANG M J, CHENG S J, SONG S W, et al. Numerical simulation on influence of flow field of combustor inlet on a certain reversed-flow combustor performance[J]. Journal of Aerospace Power, 2018, 33(6):1281-1289. (in Chinese)
[14] 党新宪. 双旋流环形燃烧室试验研究与数值模拟[D]. 南京:南京航空航天大学, 2009. DANG X X. Experimental investigation and numerical simulation of a gas turbine annular combustor with dual-stage swirler[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
[1] 杨世宇, 林远方, 于海育, 徐向华, 梁新刚. 多温度限制点条件下燃油热管理系统热回油特性分析[J]. 清华大学学报(自然科学版), 2024, 64(5): 841-851.
[2] 孙启轩, 谭磊. 冲击式水轮机水斗设计方法及性能优化[J]. 清华大学学报(自然科学版), 2024, 64(5): 852-859.
[3] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[4] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[5] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[6] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[7] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[8] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[9] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[10] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[11] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[12] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[13] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[14] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[15] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持