Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (1): 164-172    DOI: 10.16511/j.cnki.qhdxxb.2023.26.040
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
低气压富氧环境对典型织物燃烧特性的影响
贾旭宏1,2, 汤婧1, 马俊豪1, 田威1, 张晓宇1, 代尚沛1, 丁思婕1
1. 中国民用航空飞行学院 民航安全工程学院, 广汉 618307;
2. 中国民用航空飞行学院 民机火灾科学与安全工程四川省重点实验室, 广汉 618307
Effect of low-pressure and oxygen-enriched environment on combustion characteristics of typical fabrics
JIA Xuhong1,2, TANG Jing1, MA Junhao1, TIAN Wei1, ZHANG Xiaoyu1, DAI Shangpei1, DING Sijie1
1. College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China;
2. Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Civil Aviation Flight University of China, Guanghan 618307, China
全文: PDF(10710 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 室内富氧可满足人们在高高原地区的补氧需求,同时也会带来额外的火灾隐患。该文模拟高高原低压富氧环境,研究低气压下(60.5 kPa)不同氧浓度(21.0%、27.0%、33.0%和39.0%)对室内典型织物——纯棉和涤纶燃烧过程的影响,分析了织物火焰形态、点燃时间、质量损失速率、热释放速率和总热释放量等燃烧核心参数的变化。实验结果表明:在低压常氧环境下,纯棉和涤纶的点燃时间分别缩短了3.6%和7.8%,有焰燃烧时间分别增加了46.8%和197.0%,涤纶熔滴燃烧时间增加了3.0倍。随着氧浓度增大,2种材料的点燃时间、质量损失速率的达峰时间和热释放速率达峰时间均缩短,火焰高度有所增加,质量损失速率峰值和热释放速率峰值均大幅增加。涤纶燃烧效率提高了68.1%,总热释放量增加了1.2倍,且熔滴燃烧时间增加了3.1倍,纯棉燃烧变化则不明显。若以热释放速率峰值作为火灾危险性的判断依据,则织物在气压为60.5 kPa、氧浓度约为30.0%的条件下燃烧与在常压常氧下燃烧发生火灾的危险性相当。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾旭宏
汤婧
马俊豪
田威
张晓宇
代尚沛
丁思婕
关键词 低气压富氧燃烧织物燃烧热释放速率火灾危险性    
Abstract:[Objective] Artificial oxygen enrichment devices are used in several situations to ensure the safety and health of workers and travelers in high-altitude regions, such as in high-altitude airport control command centers, VIP rooms, medical rooms, and luxury hotels. Indoor oxygen enrichment can meet the oxygen supplementation needs of people. However, the flammability of materials is affected in nonstandard atmospheric conditions such as low-pressure and oxygen-rich environments, resulting could cause additional fire hazards.[Methods] This study simulates the combustion of typical indoor fabrics in the Kangding Plateau (60.5 kPa) and Guanghan, Sichuan (95.8 kPa) inside a combustion chamber by adjusting the pressure and oxygen concentration. It explores changes in the core combustion parameters such as flame form, ignition time, mass loss rate, heat release rate, and total heat release amount of pure cotton and polyester at 60.5 kPa and various oxygen concentrations (21.0%, 27.0%, 33.0%, and 39.0%).[Results] Fabric combustion at low pressure involved the stages of thermal decomposition, ignition, intense burning, and flame decay until extinction. In a low-pressure environment with normal oxygen content, complete cotton combustion was achieved, resulting in the formation of residual char that was loose and easily pulverized. In contrast, polyester combustion exhibited an efficiency of only 11.1%, producing a considerable amount of black and brittle residual char. The rates of mass loss and heat release decreased during the combustion of cotton and polyester, resulting in lower flame heights. The ignition time of cotton decreased by 3.6%, while the ignition time of polyester decreased by 7.8%. The duration of combustion increased by 46.8% for cotton and 197.0% for polyester. Additionally, the burning time of melted polyester droplets increased by 296.0%. With an increase in the oxygen concentration, the ignition time of pure cotton and polyester decreased by 19.1% and 25.7%, respectively. The time of peak rates of mass loss and heat release for pure cotton and polyester were reduced by 78.1% and 52.1%, respectively. The flame height of both materials increased, and the peak mass loss rate and heat release rate significantly rised. The combustion efficiency of polyester was improved by 68.1%, and the total heat release was increased by 1.2 times. Additionally, the burning time of melted droplets was increased by 3.1 times. In contrast, the changes in these parameters were not considerable for cotton combustion. The decrease in the partial pressure of nitrogen in a low-pressure environment decreased the flame-retardant effect of the inert nitrogen gas. Thus, if the peak rate of heat release was taken as the criterion for a fire hazard, the combustion fire hazard of fabrics at a pressure of 60.5 kPa and oxygen concentration of 30.0% was equivalent to that of combustion under normal pressure and normal oxygen conditions. [Conclusions] This study analyzes the effects of the changes in oxygen concentration at low air pressure on the combustion characteristics and reveals the fire behavior characteristics of typical combustible materials such as cotton and polyester in low-pressure oxygen-rich environments. It provides a basis for the fire safety design of artificial oxygen enrichment environments in high-altitude regions.
Key wordslow air pressure    oxygen-enriched combustion    fabrics combustion    heat release rate    fire hazard
收稿日期: 2023-05-05      出版日期: 2023-11-30
基金资助:四川省重点实验室揭榜挂帅项目(XYKY2023011);四川省自然科学基金资助项目(2022NSFSC0302);中国民用航空飞行学院面上项目(J2022-091);中国民用航空飞行学院重点项目(ZJ2021-01);中央高校基本科研业务费专项资金(X2023-3);国家级大学生创新创业训练计划项目(202210624023)
作者简介: 贾旭宏(1985—),男,教授。E-mail:jiaxuhong02@163.com
引用本文:   
贾旭宏, 汤婧, 马俊豪, 田威, 张晓宇, 代尚沛, 丁思婕. 低气压富氧环境对典型织物燃烧特性的影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 164-172.
JIA Xuhong, TANG Jing, MA Junhao, TIAN Wei, ZHANG Xiaoyu, DAI Shangpei, DING Sijie. Effect of low-pressure and oxygen-enriched environment on combustion characteristics of typical fabrics. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 164-172.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.040  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I1/164
  
  
  
  
  
  
  
  
  
[1] WEST J B. Commuting to high altitude:Value of oxygen enrichment of room air[J]. High Altitude Medicine & Biology, 2002, 3(2):223-235.
[2] WEST J B. Safe upper limits for oxygen enrichment of room air at high altitude[J]. High Altitude Medicine & Biology, 2001, 2(1):47-51.
[3] 中国民用航空局. 高原机场供氧系统建设和使用医学规范:AC-158-FS-2013-01[S]. 北京:中国民用航空局, 2013. Civil Aviation Administration of China. Medical standards for construction and use of oxygen supply systems at high-altitude airports:AC-158-FS-2013-01[S]. Beijing:Civil Aviation Administration of China, 2013. (in Chinese)
[4] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 高原地区室内空间弥散供氧(氧调)要求:GB/T 35414-2017[S]. 北京:中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Requirements of oxygen conditioning for indoor oxygen diffusion in plateau area:GB/T 35414-2017[S]. Beijing:Standards Press of China, 2017. (in Chinese)
[5] National Fire Protection Association. Standard for hypobaric facilities:NFPA 99B[S]. Quincy:NFPAInc, 2000.
[6] 西藏自治区住房和城乡建设厅. 西藏自治区民用供氧工程设计标准:DBJ 540004-2018[S]. 拉萨:地方标准出版社, 2018. Housing and Urban-Rural Development Department of Tibet Autonomous Region. Design standards for engineering of civil oxygen supply in Tibet Autonomous Region:DBJ 540004-2018[S]. Lhasa:Local Standards Press, 2018. (in Chinese)
[7] MOST J M, MANDIN P, CHEN J, et al. Influence of gravity and pressure on pool fire-type diffusion flames[J]. Symposium (International) on Combustion, 1996, 26(1):1311-1317.
[8] TU R, ZENG Y, FANG J, et al. The influence of low air pressure on horizontal flame spread over flexible polyurethane foam and correlative smoke productions[J]. Applied Thermal Engineering, 2016, 94:133-140.
[9] ALPERT R L. Pressure modeling of fires controlled by radiation[J]. Symposium (International) on Combustion, 1977, 16(1):1489-1500.
[10] NAKAMURA Y, AOKI A. Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations-for fire safety in space habitats[J]. Advances in Space Research, 2008, 41(5):777-782.
[11] OLSON S L, RUFF G A, MILLER F J. Microgravity flame spread in exploration atmospheres:Pressure, oxygen, and velocity effects on opposed and concurrent flame spread[C]//38th International Conference on Environment System, San Francisco, USA:Society of Automotive Engineers International, 2008:2080034883.
[12] 孙晓乾, 李元洲, 霍然, 等. 西藏古建筑常用木材的着火特性试验[J]. 中国科学技术大学学报, 2006, 36(1):77-80. SUN X Q, LI Y Z, HUO R, et al. Experimental on ignition characteristics of timber widely used in Tibet's historical buildings[J]. Journal of University of Science and Technology of China, 2006, 36(1):77-80. (in Chinese)
[13] 冯瑞, 田润和, 陈科位, 等. 低气压环境对固体燃烧特性影响的实验研究[J]. 清华大学学报(自然科学版), 2019, 59(2):111-121. FENG R, TIAN R H, CHEN K W, et al. Experimental study of the effect of low pressures on solid fuel combustion characteristics[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(2):111-121. (in Chinese)
[14] WANG W, WANG L, YANG R, et al. Investigation of the effect of low pressure on fire hazard in cargo compartment[J]. Applied Thermal Engineering, 2019, 158:113775.
[15] MA Q J, SHAO J C, WAN M S, et al. Experimental study on the burning behavior of cardboard box fire under low air pressure[J]. Fire and Materials, 2021, 45(2):273-282.
[16] KASHIWAGI T, INABA A, BROWN J E, et al. Effects of weak linkages on the thermal and oxidative degradation of poly (methyl methacrylates)[J]. Macromolecules, 1986, 19(8):2160-2168.
[17] HAYASHI J I, NAKAHARA T, KUSAKABE K, et al. Pyrolysis of polypropylene in the presence of oxygen[J]. Fuel Processing Technology, 1998, 55(3):265-275.
[18] MCALLISTER S, FERNANDEZ-PELLO C, URBAN D, et al. The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible[J]. Combustion and Flame, 2010, 157(9):1753-1759.
[19] SIMONS D G, ARCHIBALD E R. Selection of a sealed cabin atmosphere[J]. The Journal of Aviation Medicine, 1958, 29(5):350-357.
[20] FERERES S, LAUTENBERGER C, FERNANDEZ-PELLO C, et al. Mass flux at ignition in reduced pressure environments[J]. Combustion and Flame, 2011, 158(7):1301-1306.
[21] FERERES S, LAUTENBERGER C, FERNANDEZ-PELLO A C. Understanding ambient pressure effects on piloted ignition through numerical modeling[J]. Combustion and Flame, 2012, 159(12):3544-3553.
[22] LIU Y S, JIA Y X, WU T Y, et al. Technologies of oxygen supply for life support during the development of mineral resources in high altitude areas[J]. Engineering Sciences, 2013, 11(2):68-75.
[23] 刘应书, 杨雄, 沈民, 等. 低气压富氧环境对薄壁材料火焰传播速度的影响[J]. 燃烧科学与技术, 2010, 16(3):199-203. LIU Y S, YANG X, SHEN M, et al. Effect of low barometric pressure and oxygen-enriched atmosphere on flame spreading velocity over thin materials[J]. Journal of Combustion Science and Technology, 2010, 16(3):199-203. (in Chinese)
[24] THOMSEN M, FERNANDEZ-PELLO C, OLSON S L, et al. Downward burning of PMMA cylinders:The effect of pressure and oxygen[J]. Proceedings of the Combustion Institute, 2021, 38(3):4837-4844.
[25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纺织品燃烧性能垂直方向损毁长度、阴燃和续燃时间的测定:GB/T 5455-2014[S]. 北京:中国标准出版社, 2014. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Textiles-burning behaviour-determination of damaged length, afterglow time and afterflame time of vertically oriented specimens:GB/T 5455-2014[S]. Beijing:Standards Press of China, 2014. (in Chinese).
[26] RICH D, LAUTENBERGER C, TORERO J L, et al. Mass flux of combustible solids at piloted ignition[J]. Proceedings of the Combustion Institute, 2007, 31(2):2653-2660.
[27] HIRATA T, KASHIWAGI T, BROWN J E. Thermal and oxidative degradation of poly (methyl methacrylate):Weight loss[J]. Macromolecules, 1985, 18(7):1410-1418.
[1] 杨云浩, 张国维, 朱国庆, 袁狄平, 贺名欢. 基于机器学习的火源热释放速率预测方法[J]. 清华大学学报(自然科学版), 2024, 64(5): 922-932.
[2] 段君瑞, 何明铭, 胡皓玮, 纪杰. 正向风作用下的对开口腔室火灾行为[J]. 清华大学学报(自然科学版), 2023, 63(10): 1502-1511.
[3] 冯瑞, 田润和, 陈科位, 叶君健, 张辉. 低气压环境对固体燃烧特性影响的实验研究[J]. 清华大学学报(自然科学版), 2019, 59(2): 111-121.
[4] 朱志明, 范开果, 刘晗, 王永东. 低气压对自保护药芯焊丝电弧特性的影响[J]. 清华大学学报(自然科学版), 2015, 55(7): 734-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn