Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (3): 421-431    DOI: 10.16511/j.cnki.qhdxxb.2023.26.054
  生物摩擦学前沿 本期目录 | 过刊浏览 | 高级检索 |
仿生手指的触觉感知系统设计及性能
唐超权1, 唐玮1, 李聪1, 余婉婷2
1. 中国矿业大学 机电工程学院, 徐州 221116;
2. 浙江科技学院 自动化与电气工程学院, 杭州 310000
Design and performance of a tactile sensing system for a bionic finger
TANG Chaoquan1, TANG Wei1, LI Cong1, YU Wanting2
1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China;
2. School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310000, China
全文: PDF(12153 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 机器人的类人能力离不开完善的感知系统,而触觉感知系统能极大地扩展机器人的应用范围。该文以人手指为仿生对象,基于液体压强传导原理研制了一种具有柔性外壳、指甲、指骨、液体、压敏元件和温度敏感元件的仿生手指,并研究了仿生手指的触觉感知能力。结果表明:仿生手指的触摸压力曲线变化率和接触温度曲线变化率能够反映物体的硬度和导热性能,表明仿生手指具有硬度和温度感知能力。由仿生手指触摸振动信号提取的峰值均值和平均功率特征值能够表征织物粗糙感,由仿生手指触摸振动信号频谱图提取的主频率和功率谱重心频率特征值能够表征织物细密感,表明仿生手指具有纹理粗糙度和细密度的感知功能。基于支持向量机模型,使用仿生手指触摸振动信号的峰值均值、平均功率、主频率、功率谱重心频率及6个频段强度作为特征参数,进行织物表面纹理识别,平均识别准确率为92.8%,高于人主观分类的平均识别准确率(88.8%),表明仿生手指能够对织物表面纹理进行有效识别与分类,且优于人主观分类识别织物能力。研究成果可为触感智能机器人、触肤产品质感量化评定等提供技术支持和理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐超权
唐玮
李聪
余婉婷
关键词 仿生手指触觉感知触感特征参数分类识别    
Abstract:[Objective] The human-like capabilities of robots are linked to their well-established perception systems. Tactile perception enables the robot to perceive the texture and grain of objects through touch. Robots equipped with tactile perception can grasp and manipulate objects more precisely and detect the characteristics and attributes of objects, which enhances their perceptual and cognitive abilities. Tactile perception provides robots with important advantages, helps them achieve human-like capabilities, and promotes the continuous development and innovation of robotic technology. [Methods] Herein, a bionic finger with a flexible shell, nail, finger bone, liquid, pressure-sensitive element, and temperature-sensitive element was developed based on the principle of liquid pressure conduction. The hardness, temperature, and texture sensing ability of the bionic finger were investigated; the tactile feature parameters of the bionic finger touching the textured surface were extracted; and classification and recognition of the fabric surface texture were achieved by the bionic finger using the support vector machine algorithm. [Results] Results revealed that when the bionic finger applied pressure to three different materials, the rates of change in the pressure curve were in descending order: Lwo>Lfo>Lsp. These results were consistent with the hardness of the materials tested. The steepness of the temperature change curves obtained by the bionic finger touching the three materials was in descending order: Tss>Tpb>Two, which aligned with the thermal conductivities of the materials. As the roughness of the fabric surface increased, the peak average value and average power increased. Thus, a positive correlation existed between the peak average and average power values and roughness, namely the higher the peak average and average power, the higher the roughness of the fabric. With increasing fineness of the fabric surface, the dominant frequency and the spectral centroid increased, resulting in an enhanced sense of fineness. A significant positive correlation existed between the sense of fineness and both the dominant frequency and the spectral centroid. The larger the dominant frequency and the spectral centroid, the higher the sense of fabric fineness. The average accuracy of fabric surface texture recognition using the bionic finger and support vector machine method, based on the peak average, average power, dominant frequency, spectral centroid, and six frequency band feature intensities, was 92.8%, which was higher than the average human subjective recognition accuracy of 88.8%. [Conclusions] The rate of change of the touch pressure curve and the temperature curve of the bionic finger can indicate the softness and thermal conductivity of an object, indicating that the bionic finger has the ability to perceive hardness and temperature. The peak average and average power of the bionic finger extracted from the touch vibration signal can characterize fabric roughness, while the dominant frequency and the spectral centroid can characterize fabric fineness, indicating the ability of the bionic finger to perceive roughness and fineness. The average recognition accuracy of the bionic finger is higher than that of human subjective recognition, indicating the efficient and superior capability of the bionic finger to recognize and classify textile surface textures compared to human judgment.
Key wordsbionic finger    tactile perception    tactile perception characterization parameter    classification recognition
收稿日期: 2023-06-23      出版日期: 2024-03-06
基金资助:国家自然科学基金面上项目(52375224,51875566);江苏高校优势学科建设工程和江苏高校品牌专业建设工程资助项目(48)
通讯作者: 唐玮,教授,E-mail:tangwei@cumt.edu.cn     E-mail: tangwei@cumt.edu.cn
作者简介: 唐超权(1982—),男,副教授。
引用本文:   
唐超权, 唐玮, 李聪, 余婉婷. 仿生手指的触觉感知系统设计及性能[J]. 清华大学学报(自然科学版), 2024, 64(3): 421-431.
TANG Chaoquan, TANG Wei, LI Cong, YU Wanting. Design and performance of a tactile sensing system for a bionic finger. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 421-431.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.054  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I3/421
  
  
  
  
  
  
  
  
  
  
  
  
  
[1]SONG A G. Overview of the development of robotic tactile sensors[J]. Measurement and Control Technology, 2020, 39(5):2-8. (in Chinese)
[2]PATNAM H, GRAHAM S A, MANCHI P, et al. Single-electrode triboelectric nanogenerators based on ionic conductive hydrogel for mechanical energy harvester and smart touch sensor applications[J]. ACS Applied Materials &Interfaces, 2023, 15(13):16768-16777.
[3]SONG A G, FU L Y. Multi-dimensional force sensor for haptic interaction:A review[J]. Virtual Reality & Intelligent Hardware, 2019, 1(2):121-135.
[4]LIU H P, GUO D, SUN F C. Object recognition using tactile measurements:Kernel sparse coding methods[J]. IEEE Transactions on Instrumentation & Measurement, 2016, 65(3):656-665.
[5]HO V A, MAKIKAWA M, HIRAI S. Flexible fabric sensor toward a humanoid robot's skin:Fabrication, characterization, and perceptions[J]. IEEE Sensors Journal, 2013, 13(10):4065-4080.
[6]YI Z K, ZHANG Y L, PETERS J. Bioinspired tactile sensor for surface roughness discrimination[J]. Sensors and Actuators A:Physical, 2017, 255:46-53.
[7]WONG R D P, POSNER J D, SANTOS V J. Flexible microfluidic normal force sensor skin for tactile feedback[J]. Sensors and Actuators A:Physical, 2012, 179:62-69.
[8]俞平. 智能假肢指尖动态触觉传感阵列设计及纹理识别方法研究[D]. 杭州:浙江大学, 2017. YU P. Research on design of fingertip dynamic tactile sensor array and texture encoding method for intelligent prosthetic hand[D]. Hangzhou:Zhejiang University, 2017. (in Chinese)
[9]DENEI S, MAIOLINO P, BAGLINI E, et al. Development of an integrated tactile sensor system for clothes manipulation and classification using industrial grippers[J]. IEEE Sensors Journal, 2017, 17(19):6385-6396.
[10]HO V A, NAGATANI T, NODA A, et al. What can be inferred from a tactile arrayed sensor in autonomous in-hand manipulation?[C]//IEEE International Conference on Automation Science & Engineering. Seoul, Republic of Korea:IEEE, 2012:461-468.
[11]CHENG Y, SU C Z, JIA Y Y, et al. Data correlation approach for slippage detection in robotic manipulations using tactile sensor array[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany:IEEE, 2015:2717-2722.
[12]ZHANG S C, XIAO Y, CHEN H M, et al. Flexible triboelectric tactile sensor based on a robust MXene/leather film for human-machine interaction[J]. ACS Applied Materials & Interfaces, 2023, 15(10):13802-13812.
[13]PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS Nano, 2014, 8(5):4689-4697.
[14]冷明鑫, 宋爱国. 机器人触觉传感器的设计及标定测试[J]. 电气电子教学学报, 2017, 39(5):62-65. LENG M X, SONG A G. The design and calibration test of tactile sensor for robot[J]. Journal of Electrical and Electronic Education, 2017, 39(5):62-65. (in Chinese)
[15]ZHANG Y L, FANG Y S, LI J, et al. Dual-mode electronic skin with integrated tactile sensing and visualized injury warning[J]. ACS Applied Materials & Interfaces, 2017, 9(42):37493-37500.
[16]BAI N N, WANG L, WANG Q, et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra- broad-range high sensitivity[J]. Nature Communications, 2020, 11:209.
[17]张军, 李寒光, 李映君, 等. 压电式轴上六维力传感器的研制[J]. 仪器仪表学报, 2010, 31(1):73-77. ZHANG J, LI H G, LI Y J, et al. Development of piezoelectric six-axis force sensor on axis[J]. Chinese Journal of Scientific Instrument, 2010, 31(1):73-77. (in Chinese)
[18]SONG A G, HAN Y Z, HU H H, et al. Active perception-based haptic texture sensor[J]. Sensors and Materials, 2013, 25(1):1-15.
[19]YUN S, PARK S, PARK B, et al. Polymer-waveguide-based flexible tactile sensor array for dynamic response[J]. Advanced Materials, 2014, 26(26):4474-4480.
[20]WARD-CHERRIER B, PESTELL N, CRAMPHORN L, et al. The tactip family:Soft optical tactile sensors with 3D-printed biomimetic morphologies[J]. Soft Robotics, 2018, 5(2):216-227.
[21]FISHEL J A, LOEB G E. Sensing tactile microvibrations with the BioTac:Comparison with human sensitivity[C]//20124th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Rome, Italy:IEEE, 2012:1122-1127.
[22]王俊博, 高国伟. 压电式触觉传感器的优化与应用的研究进展[J]. 微纳电子技术, 2023, 60(2):165-174. WANG J B, GAO G W. Research progress in optimization and application of piezoelectric tactile sensors[J]. Micronanoelectronic Technology, 2023, 60(2):165-174. (in Chinese)
[23]TANG W, ZHANG S S, YU C, et al. Tactile perception of textile fabrics based on friction and brain activation[J]. Friction, 2023, 11(7):1320-1333.
[24]唐玮, 张梅梅, 杨雷, 等. 粗糙表面的摩擦触觉感知研究[J]. 摩擦学学报, 2022, 42(4):764-774. TANG W, ZHANG M M, YANG L, et al. Tactile perception of rough surface using friction and electroencephalography methods[J]. Tribology, 2022, 42(4):764-774. (in Chinese)
[1] 张守胜, 庄滕飞, 方星星, 朱华, 唐玮. 条形状精细纹理的触觉感知深度识别阈值[J]. 清华大学学报(自然科学版), 2024, 64(1): 135-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn