Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (4): 612-618    DOI: 10.16511/j.cnki.qhdxxb.2023.26.060
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
马尼拉俯冲带最大可能地震对南海诸岛的海啸灾害评估
赵广生1,2,3, 牛小静1,2,3
1. 清华大学 水圈科学与水利水电工程全国重点实验室, 北京 100084;
2. 清华大学 水利部水圈科学重点实验室, 北京 100084;
3. 清华大学 水利水电工程系, 北京 100084
Tsunami hazard assessment to South China Sea Islands induced by the earthquake with maximum possible magnitude in the Manila subduction zone
ZHAO Guangsheng1,2,3, NIU Xiaojing1,2,3
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. Key Laboratory of Hydrosphere Sciences of the Ministry of Water Resources, Tsinghua University, Beijing 100084, China;
3. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(4960 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 马尼拉俯冲带是南海可能发生大型地震海啸的地质构造带, 一旦发生大地震海啸将对南海沿岸和岛礁地区造成严重灾害。 该文通过分析马尼拉俯冲带最大地震震级并模拟诱发海啸过程, 评估在最大震级地震发生时南海岛礁面临的海啸危险性。 研究综合考虑地震震中、 震源深度和断层滑动非均匀性等因素对海啸的影响, 模拟了最大震级条件下70万个可能的海啸情景。 其中, 基于GPS大地测量数据的俯冲带闭锁反演和历史地震数据, 选取评估结果500年一遇地震震级8.9级作为最大可能地震。 研究给出了南海主要岛礁在发生8.9级地震时的岸外海啸波高, 结果表明: 即使在同一震级下, 海啸波高也有很大的随机性, 东沙岛的海啸波高可从1.8 m增加到6.2 m。 断层非均匀性对海啸波高影响显著, 忽略断层非均匀滑动分布的传统模型会低估海啸波高约20%~50%。 从空间分布来看, 西沙宣德群岛的南沙洲、 南岛和北岛,以及东沙群岛的海啸危险性最大, 海啸波高超过4 m。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵广生
牛小静
关键词 马尼拉俯冲带TDEFNODE断层闭锁南海诸岛海啸灾害评估    
Abstract:[Objective] The Manila subduction zone is the primary source of potential large tsunamis in the South China Sea, which may result in severe coastal disasters. This study aims to evaluate the tsunami hazards faced by South China Sea Islands caused by earthquakes with maximum magnitudes through assessing the earthquake with maximum possible magnitude in the Manila subduction zone and simulating the process of induced tsunamis. [Methods] The seismic potential was evaluated using the negative dislocation inversion model TDEFNODE based on GPS horizontal velocity field data. The acquired distribution of the locking and slip deficit along the Manila subduction zone was first used to assess the seismic potential. The earthquakes with a magnitude of 8.9 and a 500-year return period were selected as the maximum possible earthquake to design extreme earthquake tsunami events. This study comprehensively considered the impact of the epicenter, focal depth, and heterogeneity in the fault slip on tsunamis, and about 700 000 tsunami events under the condition of magnitude 8.9 were simulated for further evaluation. Both uniform and heterogeneous slip models were adopted to describe fault slips in the tsunami events. Considering that a larger fault slip is more likely to occur in areas with a higher degree of fault locking, the distribution of fault locking was also introduced into the heterogeneous slip model as a constraint for the random slip distribution. The tsunami events were simulated by the unit-source superposition method proposed by our group previously, which could efficiently simulate the propagation of tsunami waves based on a precomputed database and provided the offshore tsunami wave heights of major islands with small computational cost. [Results] The findings revealed that even under the same magnitude, the height of tsunami waves exhibited significant randomness. The tsunami wave height in Dongsha Island varied between 1.8 m and 6.2 m during 8.9-magnitude earthquake tsunami events. The heterogeneity of fault slip had a significant impact on tsunami wave height, and conventional models that neglected heterogeneous slip distribution would underestimate the tsunami wave height by approximately 20%-50%. In terms of spatial distribution, with tsunami wave heights exceeding 4 m, Nanshazhou, Nandao, and Beidao in the Xuande Islands and Dongsha Islands were worst affected, while the tsunami hazard in the Nansha Islands was much smaller. [Conclusions] This work enhances the tsunami hazard assessment model by introducing fault locking into the random slip model as a constraint, enabling the description of the fault slip to be more realistic than the conventional uniform slip assumption. The maximum possible tsunami hazard faced by major islands in the South China Sea has been quantified, which offers effective support for tsunami hazard prevention and reduction in these islands.
Key wordsManila subduction zone    TDEFNODE    fault locking    South China Sea Islands    tsunami hazard assessment
收稿日期: 2023-08-30      出版日期: 2024-03-27
基金资助:国家自然科学基金面上项目(51779125); 水圈科学与水利水电工程全国重点实验室自主课题(2022-KY-05)
通讯作者: 牛小静,副教授,E-mail:nxj@tsinghua.edu.cn     E-mail: nxj@tsinghua.edu.cn
作者简介: 赵广生(1996—),男,博士研究生。
引用本文:   
赵广生, 牛小静. 马尼拉俯冲带最大可能地震对南海诸岛的海啸灾害评估[J]. 清华大学学报(自然科学版), 2024, 64(4): 612-618.
ZHAO Guangsheng, NIU Xiaojing. Tsunami hazard assessment to South China Sea Islands induced by the earthquake with maximum possible magnitude in the Manila subduction zone. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 612-618.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.060  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I4/612
  
  
  
  
  
  
  
  
[1] MEGAWATI K, SHAW F, SIEH K, et al. Tsunami hazard from the subduction megathrust of the South China Sea: Part I. Source characterization and the resulting tsunami[J]. Journal of Asian Earth Sciences, 2009, 36(1): 13-20.
[2] HONG NGUYEN P, BUI Q C, DINH NGUYEN X. Investigation of earthquake tsunami sources, capable of affecting Vietnamese coast[J]. Natural Hazards, 2012, 64(1): 311-327.
[3] HSU Y J, YU S B, LOVELESS J P, et al. Interseismic deformation and moment deficit along the Manila subduction zone and the Philippine Fault system[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7639-7665.
[4] YU H Y, LIU Y J, YANG H F, et al. Modeling earthquake sequences along the Manila subduction zone: Effects of three-dimensional fault geometry[J]. Tectonophysics, 2018, 733: 73-84.
[5] SUN L G, ZHOU X, HUANG W, et al. Preliminary evidence for a 1000-year-old tsunami in the South China Sea[J]. Scientific Reports, 2013, 3(1): 1655.
[6] ZHAO X, JIANG Y P, REN Z Y, et al. Historical tsunami records and potential tsunami scenarios near Haikou coastal region[J]. Natural Hazards, 2017, 89(2): 625-645.
[7] LAU A Y A, SWITZER A D, DOMINEY-HOWES D, et al. Written records of historical tsunamis in the northeastern South China Sea: Challenges associated with developing a new integrated database[J]. Natural Hazards and Earth System Sciences, 2010, 10(9): 1793-1806.
[8] BAUTISTA M L P, BAUTISTA B C, SALCEDO J C, et al. Philippine tsunamis and Seiches (1589—2012)[M]. Quezon: Philippine Institute of Volcanology and Seismology, 2012.
[9] LI S S, FREYMUELLER J T. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian subduction zone[J]. Geophysical Research Letters, 2018, 45(8): 3453-3460.
[10] OZAWA S, NISHIMURA T, SUITO H, et al. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake[J]. Nature, 2011, 475(7356): 373-376.
[11] ADER T, AVOUAC J P, JING L Z, et al. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4): B04403.
[12] MORENO M, ROSENAU M, ONCKEN O. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone[J]. Nature, 2010, 467(7312): 198-202.
[13] BANERJEE P, BVRGMANN R. Convergence across the northwest Himalaya from GPS measurements[J]. Geophysical Research Letters, 2002, 29(13): 1652.
[14] FLETCHER H J, BEAVAN J, FREYMUELLER J, et al. High interseismic coupling of the Alaska subduction zone SW of Kodiak Island inferred from GPS data[J]. Geophysical Research Letters, 2001, 28(3): 443-446.
[15] GALGANA G, HAMBURGER M, MCCAFFREY R, et al. Analysis of crustal deformation in Luzon, Philippines using geodetic observations and earthquake focal mechanisms[J]. Tectonophysics, 2007, 432(1-4): 63-87.
[16] HSU Y J, YU S B, SONG T R A, et al. Plate coupling along the Manila subduction zone between Taiwan and northern Luzon[J]. Journal of Asian Earth Sciences, 2012, 51: 98-108.
[17] MCCAFFREY R. Time-dependent inversion of three- component continuous GPS for steady and transient sources in northern Cascadia[J]. Geophysical Research Letters, 2009, 36(7): L07304.
[18] MELGAR D, WILLIAMSON A L, SALAZAR-MONROY E F. Differences between heterogenous and homogenous slip in regional tsunami hazards modelling[J]. Geophysical Journal International, 2019, 219(1): 553-562.
[19] LI L L, SWITZER A D, CHAN C H, et al. How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment: A case study in the South China Sea[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(8): 6250-6272.
[20] YUAN Y, LI H W, WEI Y, et al. Probabilistic tsunami hazard assessment (PTHA) for southeast coast of Chinese Mainland and Taiwan Island[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(2): e2020JB020344.
[21] HERRERO A, BERNARD P. A kinematic self-similar rupture process for earthquakes[J]. Bulletin of the Seismological Society of America, 1994, 84(4): 1216-1228.
[22] GALLOVI AĆG F, BROKEŠOVÁ J. On strong ground motion synthesis with k-2 slip distributions[J]. Journal of Seismology, 2004, 8(2): 211-224.
[23] MAI P M, BEROZA G C. A spatial random field model to characterize complexity in earthquake slip[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B11): 2308.
[24] BLASER L, KRUGER F, OHRNBERGER M, et al. Scaling relations of earthquake source parameter estimates with special focus on subduction environment[J]. Bulletin of the Seismological Society of America, 2010, 100(6): 2914-2926.
[25] ZHANG X X, NIU X J. Probabilistic tsunami hazard assessment and its application to southeast coast of Hainan Island from Manila Trench[J]. Coastal Engineering, 2020, 155: 103596.
[26] KREEMER C, BLEWITT G, KLEIN E C. A geodetic plate motion and global strain rate model[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(10): 3849-3889.
[27] AMANTE C, EAKINS B W. ETOPO1 arc-minute global relief model: Procedures, data sources and analysis[M]. Boulder: NOAA National Geophysical Data Center, 2009.
[28] HAYES G P, MOORE G L, PORTNER D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362(6410): 58-61.
[29] BAUTISTA B C, BAUTISTA M L P, OIKE K, et al. A new insight on the geometry of subducting slabs in northern Luzon, Philippines[J]. Tectonophysics, 2001, 339(3-4): 279-310.
[30] ZHU G H, YANG H F, YANG T, et al. Along-strike variation of seismicity near the extinct mid-ocean ridge subducted beneath the Manila trench[J]. Seismological Research Letters, 2023, 94(2A): 792-804.
[31]YANG H F, YAO S L, HE B, et al. Earthquake rupture dependence on hypocentral location along the Nicoya Peninsula subduction megathrust[J]. Earth and Planetary Science Letters, 2019, 520: 10-17.
[32] YAO S L, YANG H F. Hypocentral dependent shallow slip distribution and rupture extents along a strike-slip fault[J]. Earth and Planetary Science Letters, 2022, 578: 117296.
[33] OKADA Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn