Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (8): 1414-1423    DOI: 10.16511/j.cnki.qhdxxb.2023.26.061
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
多因素下迷宫密封泄漏分析及实验验证
孙巍伟1, 刘跃1, 李永健2, 蒋杰3
1. 北京信息科技大学 机电工程学院, 北京 100192;
2. 清华大学 机械工程系, 高端装备界面科学与技术全国重点实验室, 北京 100084;
3. 成都市排水有限责任公司 物资设备中心, 成都 610039
Analysis and experimental verification on the leakage of labyrinth seals under multiple factors
SUN Weiwei1, LIU Yue1, LI Yongjian2, JIANG Jie3
1. Mechanical Electrical Engineering School, Beijing Information Science & Technology University, Beijing 100192, China;
2. State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
3. Chengdu Drainage Co., Ltd., Material Equipment Center, Chengdu 610039, China
全文: PDF(8404 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 迷宫密封作为转轴密封的主要形式,被广泛应用于离心式压缩机、航空发动机和膨胀透平机等旋转机械。为提高迷宫密封的密封性能和满足现代旋转机械需求,需要从多角度开展迷宫密封的结构优化研究。该文基于FLUENT软件进行迷宫密封流场仿真,采用计算流体动力学(computational fluid dynamics,CFD)方法,分析了迷宫密封几何参数及齿形结构对泄漏量的影响规律;提出了占空比、深宽比2种参数定义,通过调整参数设置,可以消除空腔高度、空腔宽度、齿厚和齿距4种参数间的耦合影响,可为参数优化设计提供重要参考;建立了高转速迷宫密封实验系统,通过实验验证,仿真结果最大误差仅为3%。结果表明:在工况参数中,压差对泄漏量具有显著影响,而转速基本不会影响泄漏量;在几何参数中,密封间隙对泄漏量具有显著影响,而占空比、深宽比和齿距对泄漏量的影响较小;在齿形结构中,斜齿具有更小的泄漏量,并且减小前齿与后齿倾斜角将有益于降低泄漏量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙巍伟
刘跃
李永健
蒋杰
关键词 迷宫密封占空比深宽比齿形结构泄漏量    
Abstract:[Objective] As the main form of shaft seal, labyrinth seals provide several advantages, such as simple structure, convenient disassembly and assembly, and the ability to withstand high pressure and other harsh working conditions. They are widely used in centrifugal compressors, aeroengines, expansion turbines, and other rotating machinery. The diversity of labyrinth seal structures and the complexity of real working conditions make its internal gas flow and heat transfer very complex. The current literature reveals several factors that affect the leakage of labyrinth seals; however, comprehensive studies on the leakage characteristics of the multifactor coupling effect have been scarce. To improve the sealing performance of the labyrinth seal and reach the development trend of modern rotating machinery, performing detailed research on the structure optimization of labyrinth seals from multiple angles is crucial. [Methods] In this study, the flow field of the labyrinth seal was simulated by FLUENT software, the influences of geometric parameters and tooth structure of the labyrinth seal on leakage were analyzed by computational fluid dynamics (CFD). The labyrinth seal experimental system was established, which could realize the labyrinth seal experimental conditions under a maximum speed of 10 000 r/min and a gas supply pressure of 0.6 MPa. [Results] The experimental results exhibited that in the operating parameters, the pressure difference had a significant impact on the leakage, while the speed basically had no impact on the leakage. Moreover, comparison of the experimental results with the mathematical model showed that the maximum error between the mathematical model and the experimental results was 3%. The orthogonal experiment results indicated that the geometric parameters of the four tooth profiles had different degrees of influence on the leakage. Thus, the seal clearance had a remarkable effect on the leakage, while the duty cycle, depth width ratio, and tooth pitch had little effect on the leakage. After analyzing the tooth shape parameters, it was found that in the tooth shape structure, the inclined teeth had smaller leakage and reducing the inclination angle between the front teeth and the rear teeth would be beneficial to reducing the leakage. Analysis of the number of sealing teeth revealed that increasing the number of teeth was conducive to reducing the leakage without increasing the axial length. Moreover, this phenomenon was more obvious with increasing pressure difference. Therefore, when the total pressure difference was a constant value, the impact of the increasing number of teeth on the leakage rate would not change significantly. [Conclusions] In this study, the CFD model of the labyrinth seal is established by FLUENT software, and the internal flow field distribution and leakage characteristics of the labyrinth seal are revealed. Two geometric mechanism parameter definitions, namely, duty cycle and depth width ratio, are proposed. The parameter definition can effectively eliminate the coupling effect between the parameters, such as tooth height and tooth thickness, and provide an important reference for parameter optimization design. A sealing experimental system that can realize the working conditions of high speed and large pressure difference is generated and can monitor the leakage in real time. Moreover, the impacts of the working condition parameters, geometric parameters, number of seal teeth, and structural parameters on the leakage of the labyrinth seal are studied by the CFD model. This study is of great importance for the structural design of labyrinth seals.
Key wordslabyrinth seal    duty cycle    depth width ratio    tooth structure    leakages
收稿日期: 2023-07-05      出版日期: 2024-07-19
通讯作者: 李永健,副教授,liyongjian@tsinghua.edu.cn     E-mail: liyongjian@tsinghua.edu.cn
引用本文:   
孙巍伟, 刘跃, 李永健, 蒋杰. 多因素下迷宫密封泄漏分析及实验验证[J]. 清华大学学报(自然科学版), 2024, 64(8): 1414-1423.
SUN Weiwei, LIU Yue, LI Yongjian, JIANG Jie. Analysis and experimental verification on the leakage of labyrinth seals under multiple factors. Journal of Tsinghua University(Science and Technology), 2024, 64(8): 1414-1423.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.061  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I8/1414
[1] ASLAN-ZADA F E, MAMMADOV V A, DOHNAL F. Brush seals and labyrinth seals in gas turbine applications[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2013, 227(2):216-230.
[2] ALIZADEH M, NIKKHAHI B, FARAHANI A S, et al. Numerical study on the effect of geometrical parameters on the labyrinth-honeycomb seal performance[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(2):362-373.
[3] 汤赫男,李赫,王世杰.热固耦合形变对BOG压缩机迷宫密封间隙的影响[J].润滑与密封, 2018, 43(11):24-27, 35. TANG H N, LI H, WANG S J. Effect of thermal-solid interaction deformation on the sealing clearance of labyrinth of the BOG compressor[J]. Lubrication Engineering, 2018, 43(11):24-27, 35.(in Chinese)
[4] KASZOWSKI P, DZIDA M, KRZY AS'G LAK P. Calculations of labyrinth seals with and without diagnostic extraction in fluid-flow machines[J]. Polish Maritime Research, 2013, 20(4):34-38.
[5] SUBRAMANIAN S, SEKHAR A S, PRASAD B V S S S. Influence of combined radial location and growth on the leakage performance of a rotating labyrinth gas turbine seal[J]. Journal of Mechanical Science and Technology, 2015, 29(6):2535-2545.
[6] 纪国剑,吉洪湖.直通篦齿封严结构压损规律和临界特性的研究[J].航空动力学报, 2008, 23(3):415-420. JI G J, JI H H. Numerical and experimental investigation of pressure loss and critical sealing characteristics of straight-through labyrinth seals[J]. Journal of Aerospace Power, 2008, 23(3):415-420.(in Chinese)
[7] SURYANARAYANAN S, MORRISON G L. Effect of tooth height, tooth width and shaft diameter on carry-over coefficient of labyrinth seals[C]//ASME Turbo Expo 2009:Power for Land, Sea, and Air. American Society of Mechanical Engineers. Orlando, USA:ASME, 2009:1147-1152.
[8] KIRK G, GAO R. Influence of preswirl on rotordynamic characteristics of labyrinth seals[J]. Tribology Transactions, 2012, 55(3):357-364.
[9] EGLI A. The leakage of steam through labyrinth seals[J]. Journal of Fluids Engineering, 1935, 57(3):115-122.
[10] 赵炬颖,陈义,祝天一,等.螺旋槽对自适应迷宫密封的影响研究[J].润滑与密封, 2022, 47(1):1-7. ZHAO J Y, CHEN Y, ZHU T Y, et al. Influence of spiral groove on the performance of adaptive labyrinth seal[J]. Lubrication Engineering, 2022, 47(1):1-7.(in Chinese)
[11] JIANG J, YANG Y Y, LI Y J, et al. Theoretical and experimental investigation on maximum pressure loads of labyrinth seal's teeth[J]. Advances in Mechanical Engineering, 2018, 10(10):1687814018794348.
[12] JIANG J, YANG Y Y, HUANG W F, et al. Numerical and experimental investigation on uniformity of pressure loads in labyrinth seal[J]. Advances in Mechanical Engineering, 2017, 9(9):1687814017728455.
[13] TANG H N, WANG S J, ZHAO J. Effect of fluid-structure interaction on sealed flow field and leakage rate based on computational fluid dynamics[J]. Journal of Shanghai Jiaotong University (Science), 2015, 20(3):326-330.
[14] 白禄,孙丹,赵欢,等.转/静子齿对迷宫密封泄漏特性与动力特性影响机制研究[J].润滑与密封, 2022, 47(3):40-48. BAI L, SUN D, ZHAO H, et al. Research on influence mechanism of rotor/stator teeth on leakage and dynamic characteristics of labyrinth seal[J]. Lubrication Engineering, 2022, 47(3):40-48.(in Chinese)
[15] 董振,魏来,汤赫男,等.轴向迷宫密封性能的流固耦合分析[J].润滑与密封, 2022, 47(1):89-93. DONG Z, WEI L, TANG H N, et al. Fluid-structure interaction analysis on axial labyrinth seal[J]. Lubrication Engineering, 2022, 47(1):89-93.(in Chinese)
[16] YANG S P, TAN B S, DENG X F. Numerical and experimental investigation of the sealing effect of a specific labyrinth seal structure[J]. Mathematical Problems in Engineering, 2019, 2019:9851314.
[17] ASOK S P, SANKARANARAYANASAMY K, SUNDARARAJAN T, et al. Neural network and CFD-based optimisation of square cavity and curved cavity static labyrinth seals[J]. Tribology International, 2007, 40(7):1204-1216.
[18] 丁学俊,杨彦磊,黄来,等.直通式迷宫密封内可压缩流场的CFD数值模拟[J].流体机械, 2008, 36(6):25-29. DING X J, YANG Y L, HUANG L, et al. Numerical simulation of compressible flow in straight through labyrinth seal by CFD[J]. Fluid Machinery, 2008, 36(6):25-29.(in Chinese)
[19] 巴鹏,张雨薇,吕忠阳,等.影响迷宫密封因素的分析[J].压缩机技术, 2016(2):24-27, 30. BA P, ZHANG Y W, Lü Z Y, et al. Analysis of the factors affecting labyrinth seal leakage[J]. Compressor Technology, 2016(2):24-27, 30.(in Chinese)
[20] WHALEN J K, ALVAREZ E, PALLISER L P. Thermoplastic labyrinth seals for centrifugal compressors[C]//Proceedings of the Thirty-Third Turbomachinery Symposium. Houston, USA:Texas A&M University, 2004:113-126.
[1] 曹恒超, 徐乙人, 孙楠楠, 韩承敏, 朱桂香, 李永健. 船用柴油机曲轴箱轴端密封试验研究与改进[J]. 清华大学学报(自然科学版), 2022, 62(9): 1532-1538.
[2] 赵炬颖, 徐乙人, 祝天一, 祁志浩, 李永健. 自适应迷宫密封仿真及实验研究[J]. 清华大学学报(自然科学版), 2022, 62(3): 463-469.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn