Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (4): 668-678    DOI: 10.16511/j.cnki.qhdxxb.2023.27.006
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
多策略帝王蝶优化算法及其工程应用
王振宇, 王磊
西安理工大学 计算机科学与工程学院, 西安 710048
Improved monarch butterfly optimization algorithm and its engineering application
WANG Zhenyu, WANG Lei
School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
全文: PDF(3218 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对帝王蝶优化算法存在的收敛速度慢、 寻优精度低和易陷入局部极值等缺陷, 提出了一种多策略改进的帝王蝶优化算法。 首先, 采用正向正态云发生器对父代帝王蝶个体执行非线性云化操作, 增加候选解数量, 提高算法的局部开发能力; 之后, 引入基于凸透镜成像的反向学习策略, 应用到当前最优个体上产生新的个体, 提高算法收敛速度和寻优精度; 最后, 在调整算子中融入自适应策略, 增加种群的多样性, 避免算法陷入局部最优。 通过对8个基准测试函数的寻优对比, 以及Wilcoxon秩和检验结果的对比, 发现改进算法具有更好的收敛性能、 寻优性能和鲁棒性。 与此同时, 通过工程应用中压力容器设计和焊接梁设计的优化对比, 进一步验证了改进算法处理实际工程问题时的优越性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王振宇
王磊
关键词 帝王蝶优化算法正态云模型凸透镜成像自适应调整率压力容器设计焊接梁设计    
Abstract:[Objective] In recent years, a large number of nonconvex, highly nonlinear, multimodal, and multivariable complex optimization problems have emerged in scientific and engineering technology design due to the continuous development of science and technology. Owing to their advantages such as simple programming, flexible operation, and efficient optimization, intelligent optimization algorithms have become research hotspots to address diverse complex optimization problems in engineering applications. They have been successfully used to solve practical problems such as neural networks, resource allocation, and target tracking. In this research, multiple strategies were developed to improve the existing monarch optimization algorithm to address its shortcomings, such as slow convergence speed, low optimization accuracy, and ease of falling into local extremum. [Methods] First, the forward normal cloud generator is used to perform nonlinear cloud operation on the parent monarch butterfly, increasing the number of candidate solutions and improving the local development ability of the algorithm. Subsequently, an opposition-based learning strategy based on convex lens imaging is used to the current optimal individual which is generated by normal cloud generator to generate new individuals and improve the convergence accuracy and speed of the algorithm. Finally, adaptive strategies are incorporated into the adjustment operator to diversify the population. [Results] Several experiments were performed on benchmark functions to verify the performance of the algorithm: (1) Different strategies proposed were analyzed using ablation experiments to verify their effectiveness. The results revealed that the proposed strategies can effectively improve the algorithm's performance. (2) The improved algorithm was compared with other swarm intelligent optimization algorithms, and the results revealed that the improved algorithm can achieve the best results on most test functions. (3) The improved algorithm was also compared with other improved versions of monarch optimization algorithm, and the results revealed that the improved algorithm exhibited more advantages such as fast convergence speed and high convergence precision. (4) The Wilcoxon rank sum test and Friedman test were used to verify the performance of the proposed algorithm. The results revealed that the improved algorithm is superior to other algorithms. [Conclusions] The optimization and comparison results of the pressure vessel design and welded beam design in engineering applications further verified the superiority of the improved algorithm in addressing real-world engineering problems.
Key wordsmonarch butterfly optimization algorithm    normal cloud model    convex lens imaging    adaptive adjustment rate    pressure vessel design    welded beam design
收稿日期: 2023-07-18      出版日期: 2024-03-27
基金资助:国家自然科学基金资助项目(62176146)
通讯作者: 王磊,教授,E-mail:leiwang@xaut.edu.cn     E-mail: leiwang@xaut.edu.cn
作者简介: 王振宇(1993—),男,博士研究生。
引用本文:   
王振宇, 王磊. 多策略帝王蝶优化算法及其工程应用[J]. 清华大学学报(自然科学版), 2024, 64(4): 668-678.
WANG Zhenyu, WANG Lei. Improved monarch butterfly optimization algorithm and its engineering application. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 668-678.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.27.006  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I4/668
  
  
  
  
  
  
  
  
  
  
  
  
[1] HAN M, GAO L, LI A, et al. An overview of high utility item sets mining methods based on intelligent optimization algorithms[J/OL]. Knowledge and Information Systems. https://doi.org/10.1007/s10115-022-01741-1.
[2] ESSA F A, MOHAMED A E, AMMAR H E. An enhanced productivity prediction model of active solar still using artificial neural network and harris hawks optimizer[J]. Applied Thermal Engineering, 2020(170): 115020.
[3] 向子权, 杨家其, 李慧琳, 等. 基于离散灰狼算法的资源分配问题求解[J]. 华中科技大学学报(自然科学版), 2021, 49(08): 81-85. XIANG Z Q, YANG J Q, LI H L, et al. Resource allocation problem solving based on discrete gray wolf algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(08): 81-85.(in Chinese)
[4] NENAVATH H, KUMAR JATOTH D R, et al. A synergy of the sine-cosine algorithm and particle swarm optimizer for improved global optimization and object tracking[J]. Swarm and Evolutionary Computation, 2018, 43: 1-30.
[5] WANG G G, SUASH D, CUI Z H. Monarch butterfly optimization[J]. Neural Computing and Applications, 2019, 31(7): 1995-2014.
[6] KAVIARASAN R, HARIKRISHNA P, ARULMURUGAN A. Load balancing in cloud environment using enhanced migration and adjustment operator based monarch butterfly optimization[J]. Advances in Engineering Software, 2022, 169: 1-11.
[7] SUN L, SI S S, XU J C, et al. Feature selection using binary monarch butterfly optimization[J]. Applied Intelligence, 2023, 53: 706-727.
[8] ABDELMONEM M, MOHAMED A T. A hybridization of differential evolution and monarch butterfly optimization for solving systems of nonlinear equations[J]. Journal of Computational Design and Engineering, 2019, 6: 354-367.
[9] YAO X, LIU Y. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2): 82-102.
[10] DU N T, ZHOU Y Q, DENG W. Improved chimp optimization algorithm for three-dimensional path planning problem[J]. Multimedia Tools and Applications, 2022, (81): 27397-27422.
[11] 刘志强, 何丽, 袁亮, 等. 采用改进灰狼算法的移动机器人路径规划[J]. 西安交通大学学报, 2022, 56(10): 49-60. LIU Z Q, HE L, YUAN L, et al. path planning of mobile robot based on TGWO Algorithm[J]. Journal of Xi'an Jiaotong University, 2022, 56(10): 49-60. (in Chinese)
[12] DORIGO M, MANIEZZO V, COLORNI A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1996, 26(1): 29-41.
[13] Gaurav D, Vijay K. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems, 2019, 165(1): 169-196.
[14] XU T P, ZHAO F Q, TANG J X, et al. A knowledge-driven monarch butterfly optimization algorithm with self-learning mechanism[J]. Applied Intelligence, 2023, (53): 12077-12097.
[15] SAMANEH Y, ESMAEIL H, MOHAMMAD M. CCMBO: a covariance-based clustered monarch butterfly algorithm for optimization problems[J]. Memetic Computing, 2022, 14(3): 377-394.
[16] Wilcoxon F. Individual comparisons by ranking methods[J]. Biometrics Bull, 1945, 1(6): 80-83.
[17] 王宗山, 丁洪伟, 王杰, 等. 基于正交设计的折射反向学习樽海鞘群算法[J]. 哈尔滨工业大学学报, 2022, 54(11): 122-136. WANG Z S, DING H W, WANG J, et al. Salp swarmalgorithm based on orthogonalrefracted opposition-based learning[J]. Journal of Harbin Institute of Technology, 2022, 54(11): 122-136.(in Chinese)
[18] Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance[J]. Journal of the American Statistical Association, 1937, 32(200): 675-701.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn