Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (1): 1-12    DOI: 10.16511/j.cnki.qhdxxb.2024.21.001
  大数据 本期目录 | 过刊浏览 | 高级检索 |
基于注意力机制的两阶段融合多视图图聚类
赵兴旺1,2, 侯哲栋1,2, 姚凯旋1,2, 梁吉业1,2
1. 山西大学 计算机与信息技术学院, 太原 030006;
2. 计算智能与中文信息处理教育部重点实验室(山西大学), 太原 030006
Two-stage fusion multiview graph clustering based on the attention mechanism
ZHAO Xingwang1,2, HOU Zhedong1,2, YAO Kaixuan1,2, LIANG Jiye1,2
1. School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China;
2. Key Laboratory of Computational Intelligence and Chinese Information Processing Ministry of Education(Shanxi University), Taiyuan 030006, China
全文: PDF(8474 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 多视图图聚类旨在挖掘多视图图数据中蕴含的簇结构,近年来得到了研究者的广泛研究。然而,现有大多数方法在不同视图信息的融合过程中同等对待各个视图,未能根据视图质量分配相应权重,而且处理具有属性和图的数据时面临一定困难。该文提出了一种基于注意力机制的两阶段融合多视图图聚类算法。首先,应用图滤波器过滤高频噪声,各个视图获得更适用于下游聚类任务的节点平滑表示;其次,基于注意力机制融合各个视图特征滤波后的平滑表示,并为拓扑融合阶段提供初始化权重;然后,在拓扑融合阶段,将不同视图加权融合的Laplace矩阵与融合的特征表示输入编码器得到嵌入表示,并构造优化函数对权重和嵌入表示进行优化,可以为质量较好的视图分配较大权重,同时产生更加紧凑的嵌入表示;最后,通过对嵌入表示执行谱聚类得到最终的聚类结果。将该算法和已有的相关聚类算法在真实数据集上进行了实验分析。结果表明,相比已有算法,所提出的算法在处理多视图图数据方面更加有效。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵兴旺
侯哲栋
姚凯旋
梁吉业
关键词 多视图学习图聚类注意力机制图学习嵌入表示    
Abstract:[Objective] Multiview graph clustering aims to investigate the inherent cluster structures in multiview graph data and has received quite extensive research attention over recent years. However, there are differences in the final quality of different views, but existing methods treat all views equally during the fusion process without assigning the corresponding weights based on the received quality of the view. This may result in the loss of complementary information from multiple views and go on to ultimately affect the clustering quality. Additionally, the topological structure and attribute information of nodes in multiview graph data differ significantly in terms of content and form, making it somewhat challenging to integrate these two types of information effectively. To solve these problems, this paper proposes two-stage fusion multiview graph clustering based on an attention mechanism.[Methods] The algorithm can be divided into three stages:feature filtering based on graph filtering, feature fusion based on the attention mechanism, and topological fusion based on the attention mechanism. In the first stage, graph filters are applied to combine the attribute information with the topological structure of each view. In this process, a smoother embedding representation is achieved by filtering out high-frequency noise. In the second stage, the smooth representations of individual views are fused using attention mechanisms to obtain the consensus smooth representation, which incorporates information from all views. Additionally, a consensus Laplacian matrix is obtained by combining multiple views' Laplacian matrices using learnable weights. To obtain the final embedded representation, the consensus Laplacian matrix and consensus smooth representation are inputted into an encoder. Subsequently, the similarity matrix for the final embedded representation is computed. Training samples are selected from the similarity matrix, and the embedded representation and learnable weights of the Laplacian matrix are optimized iteratively to obtain a somewhat more compressed embedded representation. Finally, performing spectral clustering on the embedding representation yields the clustering results. The performance of the algorithm is evaluated using widely-used clustering evaluation metrics, including accuracy, normalized mutual information, an adjusted Rand index, and an F1-score, on three datasets:Association for Computing Machinery (ACM), Digital Bibliography & Library Project (DBLP), and Internet Movie Database (IMDB).[Results] 1) The experimental results show that the proposed algorithm is more effective in handling multiview graph data, particularly for the ACM and DBLP datasets, compared to extant methods. However, it may not perform as well as LMEGC and MCGC on the IMDB dataset. 2) Through the exploration of view quality using the proposed methods, the algorithm can learn weights specific to each view based on quality. 3) Compared to the best-performing single view on each dataset (ACM, DBLP, and IMDB), the proposed algorithm achieves an average performance improvement of 2.4%, 2.9%, and 2.1%, respectively, after fusing all views. 4) Exploring the effect of the number of graph filter layers and the ratio of positive to negative node pairs on the performance of the algorithm, it was found that the best performance was achieved with somewhat small graph filter layers. The optimal ratio for positive and negative node pairs was around 0.01 and 0.5.[Conclusions] The algorithm combines attribute information with topological information through graph filtering to obtain smoother representations that are more suitable for clustering. The attention mechanisms can learn weights from both the topological and attribute information perspectives based on view quality. In this way, the representation could get the information from each view while avoiding the influence of poor-quality views. The proposed method in this paper achieves the expected results, greatly enhancing the clustering performance of the algorithm.
Key wordsmultiview learning    graph clustering    attention mechanism    graph learning    embedded representation
收稿日期: 2023-08-12      出版日期: 2023-11-30
基金资助:国家自然科学基金面上项目(62072293,62272285);国家自然科学基金区域联合创新基金重点项目(U21A20473)
通讯作者: 梁吉业,男,教授,E-mail:ljy@sxu.edu.cn     E-mail: ljy@sxu.edu.cn
作者简介: 赵兴旺(1984—),男,副教授。
引用本文:   
赵兴旺, 侯哲栋, 姚凯旋, 梁吉业. 基于注意力机制的两阶段融合多视图图聚类[J]. 清华大学学报(自然科学版), 2024, 64(1): 1-12.
ZHAO Xingwang, HOU Zhedong, YAO Kaixuan, LIANG Jiye. Two-stage fusion multiview graph clustering based on the attention mechanism. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 1-12.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.21.001  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I1/1
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 刘金花, 王洋, 钱宇华. 基于谱结构融合的多视图聚类[J]. 计算机研究与发展, 2022, 59(4):922-935. LIU J H, WANG Y, QIAN Y H. Multi-view clustering with spectral structure fusion[J]. Journal of Computer research and Development, 2022, 59(4):922-935. (in Chinese)
[2] 刘晓琳, 白亮, 赵兴旺, 等. 基于多阶近邻融合的不完整多视图聚类算法[J]. 软件学报, 2022, 33(4):1354-1372. LIU X L, BAI L, ZHAO X W, et al. Incomplete multi-view clustering algorithm based on multi-order neighborhood fusion[J]. Journal of Software, 2022, 33(4):1354-1372. (in Chinese)
[3] LIN Z P, KANG Z. Graph filter-based multi-view attributed graph clustering[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence. Montreal, Canada:IJCAI.org, 2021:2723-2729.
[4] PAN E L, KANG Z. Multi-view contrastive graph clustering[C]//Proceedings of the 35th Conference on Neural Information Processing Systems. Cambridge, USA:MIT Press, 2021:2148-2159.
[5] LIN Z P, KANG Z, ZHANG L Z, et al. Multi-view attributed Graph clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2):1872-1880.
[6] FAN S H, WANG X, SHI C, et al. One2Multi graph autoencoder for multi-view graph clustering[C]//Proceedings of the Web Conference 2020. Taipei, China:ACM, 2020:3070-3076.
[7] CAI E C, HUANG J, HUANG B S, et al. GRAE:Graph recurrent autoencoder for multi-view graph clustering[C]//Proceedings of the 4th International Conference on Algorithms, Computing and Artificial Intelligence. Sanya, China:ACM, 2021:72.
[8] LIANG J Y, LIU X L, BAI L, et al. Incomplete multi-view clustering via local and global co-regularization[J]. Science China Information Sciences, 2022, 65(5):152105.
[9] CHUNG F R K. Spectral graph theory[M]. Providence:American Mathematical Society, 1997.
[10] WU D Y, XU J, DONG X, et al. GSPL:A succinct kernel model for group-sparse projections learning of multiview data[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence. San Francisco, USA:Morgan Kaufmann, 2021:3185-3191.
[11] LI R H, ZHANG C Q, HU Q H, et al. Flexible multi-view representation learning for subspace clustering[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China:AAAI Press, 2019:2916-2922.
[12] NIE F P, LI J, LI X L. Self-weighted multiview clustering with multiple graphs[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia:AAAI Press, 2017:2564-2570.
[13] XIA W, WANG S, YANG M, et al. Multi-view graph embedding clustering network:Joint self-supervision and block diagonal representation[J]. Neural Networks, 2022, 145:1-9.
[14] CHENG J F, WANG Q Q, TAO Z Q, et al. Multi-view attribute graph convolution networks for clustering[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Yokohama, Japan:IJCAI.org, 2021:411.
[15] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA:Curran Associates Inc., 2017:6000-6010.
[16] DEVLIN J, CHANG M W, LEE K, et al. BERT:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1(Long and Short Papers). Minneapolis, USA:ACL, 2019.
[17] KITAEV N, KAISER L, LEVSKAYA A. Reformer:The efficient transformer[C]//Proceedings of the 8th International Conference on Learning Representations. Addis Ababa, Ethiopia:OpenReview.net, 2020.
[18] SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs:Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30(3):83-98.
[19] WANG J, LIANG J Y, YAO K X, et al. Graph convolutional autoencoders with co-learning of graph structure and node attributes[J]. Pattern Recognition, 2022, 121:108215.
[20] KIPF T N, Welling M. Variational graph auto-encoders[EB/OL].[2016-01-01]. https://arxiv.org/abs/1611.07308.
[21] TANG J, QU M, WANG M Z, et al. LINE:Large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. Florence, Italy:International World Wide Web Conferences Steering Committee, 2015:1067-1077.
[22] LIU W Y, CHEN P Y, YEUNG S, et al. Principled multilayer network embedding[C]//Proceedings of the 2017 International Conference on Data Mining Workshops. New Orleans, USA:IEEE Press, 2017:134-141.
[23] XIA R K, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Québec City, Canada:AAAI Press, 2014:2149-2155.
[24] FETTAL C, LABIOD L, NADIF M. Simultaneous linear multi-view attributed graph representation learning and clustering[C]//Proceedings of the 60th ACM International Conference on Web Search and Data Mining. Singapore, Singapore:ACM, 2023:303-311.
[1] 张雪芹, 刘岗, 王智能, 罗飞, 吴建华. 基于多特征融合和深度学习的微观扩散预测[J]. 清华大学学报(自然科学版), 2024, 64(4): 688-699.
[2] 张名芳, 李桂林, 吴初娜, 王力, 佟良昊. 基于轻量型空间特征编码网络的驾驶人注视区域估计算法[J]. 清华大学学报(自然科学版), 2024, 64(1): 44-54.
[3] 张洋, 江铭虎. 基于句法树节点嵌入的作者识别方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1390-1398.
[4] 黄贲, 康飞, 唐玉. 基于目标检测的混凝土坝裂缝实时检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1078-1086.
[5] 周迅, 李永龙, 周颖玥, 王皓冉, 李佳阳, 赵家琦. 基于改进DeepLabV3+网络的坝面裂缝检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1153-1163.
[6] 逯波, 段晓东, 袁野. 面向跨模态检索的自监督深度语义保持Hash[J]. 清华大学学报(自然科学版), 2022, 62(9): 1442-1449.
[7] 杨宏宇, 张梓锌, 张良. 基于并行特征提取和改进BiGRU的网络安全态势评估[J]. 清华大学学报(自然科学版), 2022, 62(5): 842-848.
[8] 李明扬, 孔芳. 融入自注意力机制的社交媒体命名实体识别[J]. 清华大学学报(自然科学版), 2019, 59(6): 461-467.
[9] 张宇, 张鹏远, 颜永红. 基于注意力LSTM和多任务学习的远场语音识别[J]. 清华大学学报(自然科学版), 2018, 58(3): 249-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn