Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (8): 1424-1434    DOI: 10.16511/j.cnki.qhdxxb.2024.21.013
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
动静叶间距对气液固混输叶片泵性能及流动特性的影响分析
胡丽伟1, 李慧闯1, 杨佳杭1, 梁澳1, 张文武1,2
1. 中国农业大学 水利与土木工程学院, 北京 100083;
2. 北京市供水管网系统安全与节能工程技术研究中心, 北京 100083
Influence of impeller-guide vane axial distance on the performance and flow characteristics of the gas-liquid-solid multiphase pump
HU Liwei1, LI Huichuang1, YANG Jiahang1, LIANG Ao1, ZHANG Wenwu1,2
1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China;
2. Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, Beijing 100083, China
全文: PDF(22394 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 混输叶片泵是多相混输过程中的关键设备,其综合性能的提高对系统的输运能力至关重要。为揭示动静叶间距对混输叶片泵气液固三相流动特性的影响,基于Euler多流体模型,对某气液固混输叶片泵动静叶间距分别为8、10、12、14、16 mm时的内部流体流动进行了数值模拟。结果表明,当动静叶间距由8 mm增加到16 mm,混输叶片泵的扬程和效率分别下降了0.47 m和1.38%,且下降趋势可分为骤降区Ⅰ、缓变区和骤降区Ⅱ。不同动静叶间距下,气液固混输叶片泵内压强、固体体积分数、气体体积分数等分布规律相似,但随着动静叶间距增加,气液固混输叶片泵叶轮和导叶进出口压强差降低,气体和固体的聚集程度增大,且液体撞击导叶叶片压力面最剧烈的位置逐渐前移,导叶内涡量增强,涡结构更加明显,从而导致混输叶片泵输运性能降低。研究成果可为气液固混输叶片泵设计过程中动静叶间距的选取提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡丽伟
李慧闯
杨佳杭
梁澳
张文武
关键词 混输叶片泵动静叶间距气液固三相流动涡量数值模拟    
Abstract:[Objective] Multiphase rotodynamic pumps are widely used in multiphase mixed transport processes, including petrochemicals, agricultural irrigation, urban water supply, and drainage, attributed to their advantages of compact structure and good operation under high-speed and high-sand content conditions. The performance of these pumps is crucial for the transport capacity of the mixed transport system; thus, the improvement of their performance has always been a research interest. The impeller-guide vane axial distance of the gas-liquid-solid multiphase pump can seriously affect its transportation performance, but is rarely researched. [Methods] Herein, a multiphase rotodynamic pump with impeller-guide vane axial distances (d) of 8, 10, 12, 14, and 16 mm were modeled via UG-NX. The inlet and outlet pipelines, as well as impellers and guide vanes, were meshed via ICEM-CFD and TurboGrid, respectively. Based on the Euler multiphase flow model, computational fluid dynamics (CFD) numerical simulations were conducted to reveal the influence law of d on the comprehensive performance, including the head, efficiency, pressure, gas void fraction (GVF), solid void fraction (SVF), vorticity, and vortex structure for the gas-liquid-solid multiphase rotodynamic pumps. [Results] The adopted accuracy of the numerical methods was verified through experiments. The numerical results revealed that as d increased from 8 mm to 16 mm, the head and efficiency of the multiphase rotodynamic pump showed an overall decreasing trend; the head and efficiency of the pump declined by 0.45 m and 1.38%, respectively. As d increased from 8 mm to 10 mm, the head and efficiency of the multiphase rotodynamic pump declined by 0.21 m and 0.52%, respectively, which was recorded as performance plummet Ⅰ; as d increased from 10 mm to 14 mm, the head and efficiency of the multiphase rotodynamic pump declined by 0.09 m and 0.12%, respectively—recorded as performance moderation; as d increased from 14 mm to 16 mm, the head and efficiency of the multiphase rotodynamic pump declined by 0.15 m and 0.74%, respectively—recorded as performance plummet Ⅱ. The change in d had a more significant influence on the flow state in the guide vane than that in the impeller. As d increased, the pressure difference decreased from the impeller inlet to the guide vane outlet, GVF at the trailing edge and SVF near the pressure surface at the leading edge of the guide vane blades gradually increased, the vorticity in the multiphase rotodynamic pump increased, and the vortex structure remained prominent, decreasing the overall pump performance. [Conclusions] The increase in d will reduce the head and efficiency of the multiphase pump and make the internal flow more turbulent. However, it will strengthen the rotor-stator interaction if d is exceedingly small. Therefore, the value of d should be selected from the performance moderation in the optimization design of such pumps.
Key wordsmultiphase rotodynamic pump    impeller-guide vane axial distance    gas-liquid-solid flow    vortex    numerical simulation
收稿日期: 2023-12-12      出版日期: 2024-07-19
基金资助:国家自然科学基金资助项目(52109107;52279092);清华大学水沙科学与水利水电工程国家重点实验室开放基金项目(sklhse-2022-E-03)
通讯作者: 张文武,副教授,E-mail:zhangwenwu@cau.edu.cn     E-mail: zhangwenwu@cau.edu.cn
引用本文:   
胡丽伟, 李慧闯, 杨佳杭, 梁澳, 张文武. 动静叶间距对气液固混输叶片泵性能及流动特性的影响分析[J]. 清华大学学报(自然科学版), 2024, 64(8): 1424-1434.
HU Liwei, LI Huichuang, YANG Jiahang, LIANG Ao, ZHANG Wenwu. Influence of impeller-guide vane axial distance on the performance and flow characteristics of the gas-liquid-solid multiphase pump. Journal of Tsinghua University(Science and Technology), 2024, 64(8): 1424-1434.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.21.013  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I8/1424
[1] 张文武,余志毅,李泳江,等.叶片式气液混输泵全流道内流场特性分析[J].机械工程学报, 2019, 55(10):168-174. ZHANG W W, YU Z Y, LI Y J, et al. Flow characteristics analysis for the whole flow passage of a multiphase rotodynamic pump[J]. Journal of Mechanical Engineering, 2019, 55(10):168-174.(in Chinese)
[2] 肖业祥,桂中华,张瑾,等.分流叶片对混输泵水力性能影响的优化分析[J].水力发电学报, 2023, 42(4):25-31. XIAO Y X, GUI Z H, ZHANG J, et al. Optimization analysis of effect of splitter blades on flow characteristics of multiphase pumps[J]. Journal of Hydroelectric Engineering, 2023, 42(4):25-31.(in Chinese)
[3] 张文武,祝宝山,余志毅.流动参数对混输泵全流道内气液相间作用特性的影响[J].工程热物理学报, 2020, 41(8):1911-1916. ZHANG W W, ZHU B S, YU Z Y. Numerical analysis for the influence of flow parameters on phase interaction in a multiphase rotodynamic pump[J]. Journal of Engineering Thermophysics, 2020, 41(8):1911-1916.(in Chinese)
[4] 张文武,余志毅,祝宝山,等.叶顶间隙对低比转速混流泵性能及内部流场影响的数值研究[J].机械工程学报, 2017, 53(22):182-189. ZHANG W W, YU Z Y, ZHU B S, et al. Study of tip clearance effects on performances and flow field of a Low specific speed mixed-flow pump[J]. Journal of Mechanical Engineering, 2017, 53(22):182-189.(in Chinese)
[5] WANG J, ZHA H B, MCDONOUGH J M, et al. Analysis and numerical simulation of a novel gas-liquid multiphase scroll pump[J]. International Journal of Heat and Mass Transfer, 2015, 91:27-36.
[6] HUA G, FALCONE G, TEODORIU C, et al. Comparison of multiphase pumping technologies for subsea and downhole applications[J]. Oil and Gas Facilities, 2012, 1(1):36-46.
[7] ZHANG J Y, CAO S J, LI Y J, et al. Visualization study of gas-liquid two-phase flow patterns inside a three-stage rotodynamic multiphase pump[J]. Experimental Thermal and Fluid Science, 2016, 70:125-138.
[8] SUN W H, YU Z Y, ZHANG K W. Effect of shear-thinning property on the energy performance and flow field of an axial flow pump[J]. Energies, 2022, 15(7):2341.
[9] ZHANG W W, YU Z Y, ZHU B S. Numerical study of pressure fluctuation in a gas-liquid two-phase mixed-flow pump[J]. Energies, 2017, 10(5):634.
[10] 史广泰,王彬鑫,李和林,等.轴向间隙对多相混输泵水力性能的影响[J].石油机械, 2021, 49(12):98-104. SHI G T, WANG B X, LI H L, et al. Effect of axial clearance on hydraulic performance of multiphase pump[J]. China Petroleum Machinery, 2021, 49(12):98-104.(in Chinese)
[11] 左世鑫,但玥,马越,等.轴向间隙对多相混输泵内流特性及压力载荷的影响[J].机床与液压, 2021, 49(24):159-164. ZUO S X, DAN Y, MA Y, et al. Effect of the axial clearance on the internal flow characteristics and pressure load of the multiphase pump[J]. Machine Tool&Hydraulics, 2021, 49(24):159-164.(in Chinese)
[12] ZHU H W, ZHU J J, LIN Z M, et al. Performance degradation and wearing of electrical submersible pump (ESP) with gas-liquid-solid flow:Experiments and mechanistic modeling[J]. Journal of Petroleum Science and Engineering, 2021, 200:108399.
[13] WANG Z N, DENG Y J, PAN Y, et al. Experimentally investigating the flow characteristics of airlift pumps operating in gas-liquid-solid flow[J]. Experimental Thermal and Fluid Science, 2020, 112:109988.
[14] DEENDARLIANTO, SUPRABA I, MAJID A I, et al. Experimental investigation on the flow behavior during the solid particles lifting in a micro-bubble generator type airlift pump system[J]. Case Studies in Thermal Engineering, 2019, 13:100386.
[15] 闫重阳,张宇飞,陈海昕.基于离散伴随的流场反演在湍流模拟中的应用[J].航空学报, 2021, 42(4):524695. YAN C Y, ZHANG Y F, CHEN H X. Application of field inversion based on discrete adjoint method in turbulence modeling[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524695.(in Chinese)
[16] ZHANG W W, HU L W, LI H C, et al. Numerical analysis of bubble size effect in a gas-liquid two-phase rotodynamic pump by using a bubble coalescence and collapse model[J]. Chemical Engineering Research and Design, 2023, 191:617-629.
[17] 唐学林,赵旭红,李云开,等.迷宫流道滴头内流场和颗粒运动的不同湍流模型数值模拟[J].农业工程学报, 2018, 34(16):120-128. TANG X L, ZHAO X H, LI Y K, et al. Numerical simulation of flow fields and particle movement characteristics in labyrinth channel emitter using different turbulence models[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16):120-128.(in Chinese)
[18] 资丹,王本宏,王福军,等.开机组合对泵站进水系统泥沙浓度分布的影响[J].农业工程学报, 2022, 38(7):59-68. ZI D, WANG B H, WANG F J, et al. Influences of start-up pump units on the sediment concentration for the intake system of a pumping station[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(7):59-68.(in Chinese)
[19] YU Z Y, ZHU B S, CAO S L. Interphase force analysis for air-water bubbly flow in a multiphase rotodynamic pump[J]. Engineering Computations, 2015, 32(7):2166-2180.
[20] LI D Y, QIN Y L, ZUO Z G, et al. Numerical simulation on pump transient characteristic in a model pump turbine[J]. Journal of Fluids Engineering, 2019, 141(11):111101.
[21] LI C, LI X F, SU Y X, et al. A new zero-equation turbulence model for micro-scale climate simulation[J]. Building and Environment, 2012, 47:243-255.
[22] LI H C, ZHANG W W, HU L W et al. Studies on flow characteristics of gas-liquid multiphase pumps applied in petroleum transportation engineering-A review[J]. Energies, 2023, 16(17):6292.
[23] ZHANG W W, XIE X, ZHU B S, et al. Analysis of phase interaction and gas holdup in a multistage multiphase rotodynamic pump based on a modified Euler two-fluid model[J]. Renewable Energy, 2021, 164:1496-1507.
[24] 刘大有.二相流体动力学[M].北京:高等教育出版社, 1993. LI D Y. Fluid dynamics of two-phase systems[M]. Beijing:Higher Education Press, 1993.(in Chinese)
[25] ZHANG W W, YU Z Y, ZAHID M N, et al. Study of the gas distribution in a multiphase rotodynamic pump based on interphase force analysis[J]. Energies, 2018, 11(5):1069.
[26] FU W S, LAI Y C, LI C G. Estimation of turbulent natural convection in horizontal parallel plates by the Q criterion[J]. International Communications in Heat and Mass Transfer, 2013, 45:41-46.
[1] 靳鑫, 王兵. 异戊烷喷淋塔内凝华碳捕集的一维模拟[J]. 清华大学学报(自然科学版), 2024, 64(8): 1502-1508.
[2] 崔靖奇, 吴顺川, 程海勇, 王涛, 姜关照, 浦仕江, 任子健. 滇中引水软岩隧洞围岩位移时序预测[J]. 清华大学学报(自然科学版), 2024, 64(7): 1215-1225.
[3] 陈念, 张强, 汪小刚, 王玉杰, 王鹏, 王丹. 深埋隧洞地下水分层水力联系地表深孔监测技术与工程应用[J]. 清华大学学报(自然科学版), 2024, 64(7): 1226-1237.
[4] 杨世宇, 林远方, 于海育, 徐向华, 梁新刚. 多温度限制点条件下燃油热管理系统热回油特性分析[J]. 清华大学学报(自然科学版), 2024, 64(5): 841-851.
[5] 孙启轩, 谭磊. 冲击式水轮机水斗设计方法及性能优化[J]. 清华大学学报(自然科学版), 2024, 64(5): 852-859.
[6] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[7] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[8] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[9] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[10] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[11] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[12] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[13] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[14] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[15] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn