Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2025, Vol. 65 Issue (5): 825-832    DOI: 10.16511/j.cnki.qhdxxb.2024.21.036
  过程系统工程 本期目录 | 过刊浏览 | 高级检索 |
基于梯形网络的半监督建模及化工产品组分软测量
滕潮鹏1, 纪成1, 马方圆1,2, 王璟德1, 孙巍1
1. 北京化工大学 化学工程学院, 北京 100029;
2. 清华大学无锡应用技术研究院, 无锡 214072
Semi-supervised modeling and soft sensing of chemical product components based on ladder networks
TENG Chaopeng1, JI Cheng1, MA Fangyuan1,2, WANG Jingde1, SUN Wei1
1. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
2. Wuxi Research Institute of Applied Technologies, Tsinghua University, Wuxi 214072, China
全文: PDF(5392 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 在化工生产过程中,由于不同变量的采样频率不同,产生了大量无标签数据,难以有效利用,造成了数据浪费。此外,分散式控制系统(DCS)在数据采集过程中,受环境干扰和测量仪器老化等因素的影响,会产生大量噪声数据,增加了软测量建模的难度,为了解决这些问题,获知关键产品的质量,提高企业的效率,该文提出了一种基于梯形网络的半监督建模及化工产品组分软测量方法,在利用有标签数据的同时,充分利用了大量的无标签数据提高软测量模型的预测精度和泛化能力,针对数据中存在的噪声,梯形网络在编码器中逐层加入噪声,然后利用解码器和跳跃连接逐层协同去噪,重建无噪声的特征表示和输入,以达到去除噪声的目的。将该方法应用于甲醇制烯烃过程对产品乙烯组分进行软测量,R2达到0.899,预测效果比常见的有监督学习方法和半监督学习方法更准确。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
滕潮鹏
纪成
马方圆
王璟德
孙巍
关键词 甲醇制烯烃产品质量预测变量选择跳跃连接    
Abstract:[Objective] During chemical production, the different sampling frequencies of different variables generate a substantial amount of unlabeled data, which is challenging to use effectively, resulting in data waste. Additionally, distributed control systems frequently produce noisy data due to environmental interference and aging measurement instruments, complicating soft sensing modeling. Furthermore, in semi-supervised tasks, unsupervised components can undermine the accuracy of supervised tasks. To address these issues, this study proposes a semi-supervised soft sensing method for product quality based on a ladder network, enabling accurate, timely determination of key product quality and enhancing operational efficiency. [methods] A two-step variable screening method—maximum mutual information (MIC) followed by minimum redundancy maximum relevance (mRMR)—was used to screen auxiliary variables. MIC was first applied to eliminate low-correlation variables, and mRMR was then used to remove redundant variables among the auxiliary set, yielding an optimal selection for modeling. The ladder network-based soft sensing method was then established, improving noise resistance by injecting disturbances into each encoder layer and reconstructing noise-free features layer by layer through the decoder. Skip connections were added between encoders and decoders to extract more information from unlabeled data, enhancing focus on supervised tasks and strengthening the model's robustness and generalization. [Results] This method was applied to the methanol-to-olefin (MTO) process, termed DMTO. The MIC and mRMR screening reduced 203 auxiliary variables to an optimal 50. After preprocessing, several soft sensor models were established to compare outcomes. Results showed that unlabeled samples improved the effectiveness of supervised soft sensing tasks, with the proposed method enhancing various evaluation metrics. Residual analysis further indicated that the predicted residuals of the ladder network-based semi-supervised method closely aligned with a standard normal distribution, validating the method's superiority. [Conclusions] Compared with supervised and other semi-supervised learning methods, the ladder network demonstrates superior prediction accuracy and generalization in soft sensing ethylene products in the DMTO process. The proposed approach offers promising applications for real-time monitoring and control of product quality in chemical production.
Key wordsmethanol to olefin    product quality prediction    variable selection    skip connection
收稿日期: 2024-09-13      出版日期: 2025-04-15
ZTFLH:  TE6  
基金资助:国家自然基金面上项目(22278018)
通讯作者: 孙巍,教授,E-mail:sunwei@buct.edu.cn     E-mail: sunwei@buct.edu.cn
作者简介: 滕潮鹏(2000—),男,硕士研究生。
引用本文:   
滕潮鹏, 纪成, 马方圆, 王璟德, 孙巍. 基于梯形网络的半监督建模及化工产品组分软测量[J]. 清华大学学报(自然科学版), 2025, 65(5): 825-832.
TENG Chaopeng, JI Cheng, MA Fangyuan, WANG Jingde, SUN Wei. Semi-supervised modeling and soft sensing of chemical product components based on ladder networks. Journal of Tsinghua University(Science and Technology), 2025, 65(5): 825-832.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.21.036  或          http://jst.tsinghuajournals.com/CN/Y2025/V65/I5/825
[1] JI C, SUN W. A review on data-driven process monitoring methods:Characterization and mining of industrial data[J]. Processes, 2022, 10(2):335.
[2] OUALI Y, HUDELOT C, TAMI M. An overview of deep semi-supervised learning[EB/OL].(2020-07-06)[2024-09-13] . https://doi.org/10.48550/arXiv.2006.05278.
[3] LI Z, JIN H P, DONG S L, et al. Semi-supervised ensemble support vector regression based soft sensor for key quality variable estimation of nonlinear industrial processes with limited labeled data[J]. Chemical Engineering Research and Design, 2022, 179:510-526.
[4] KINGMA D P, REZENDE D J, MOHAMED S, et al. Semi-supervised learning with deep generative models[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada:ACM, 2014:3581-3589.
[5] YANG X L, SONG Z X, KING I, et al. A survey on deep semi-supervised learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(9):8934-8954.
[6] VAN ENGELEN J E, HOOS H H. A survey on semi-supervised learning[J]. Machine Learning, 2020, 109(2):373-440.
[7] RASMUS A, VALPOLA H, HONKALA M, et al. Semi-supervised learning with ladder networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada:ACM, 2015:3546-3554.
[8] 武昊.基于深度学习的化工过程软测量建模方法研究[D].北京:北京化工大学, 2023. WU H. Research on soft sensor modeling of chemical process based on deep learning[D]. Beijing:Beijing University of Chemical Technology, 2023.(in Chinese)
[9] RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062):1518-1524.
[10] LUO L, HE G, CHEN C, et al. Adaptive data dimensionality reduction for chemical process modeling based on the information criterion related to data association and redundancy[J]. Industrial&Engineering Chemistry Research, 2022, 61(2):1148-1166.
[11] PENG H C, LONG F H, DING C. Feature selection based on mutual information:Criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8):1226-1238.
[12] 孙慧峰,刘桂莲. DMTO与SMTO甲醇制烯烃工艺的能耗分析及优化节能[J].石化技术与应用, 2021, 39(4):234-241. SUN H F, LIU G L. Energy consumption analysis and optimization of energy saving of DMTO and SMTO methanol to olefin process[J]. Petrochemical Technology&Application, 2021, 39(4):234-241.(in Chinese)
[13] MA F Y, JI C, WANG J D, et al. Soft sensor modeling method considering higher-order moments of prediction residuals[J]. Processes, 2024, 12(4):676.
[1] 邱冬, 赵祺铭, 胡益炯, 邱彤. 形状解耦伽马分布参数油品分子重构[J]. 清华大学学报(自然科学版), 2025, 65(5): 813-824.
[2] 陈晓方, 钱荧灿, 王雅琳, 阳春华. 基于主元导数特征聚类的加氢裂化动态调整区间识别[J]. 清华大学学报(自然科学版), 2018, 58(1): 81-86.
[3] 梅华, 杜玉鹏, 王振雷, 钱锋. 基于分子同系物向量表示的石脑油特征提取方法[J]. 清华大学学报(自然科学版), 2016, 56(7): 723-727.
[4] 邱彤, 陈金财, 方舟. 基于结构导向集总的石油馏分分子重构模型[J]. 清华大学学报(自然科学版), 2016, 56(4): 424-429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn