Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (6): 1024-1031    DOI: 10.16511/j.cnki.qhdxxb.2024.22.015
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
隧道火灾中物理场与关键控制参数间的快速双向预测
洪瑶, 史聪灵, 李俊毅, 李佳
中国安全生产科学研究院 交通安全研究所, 地铁火灾与客流疏运安全北京市重点实验室, 北京 100012
Rapid bidirectional prediction between the physical fields and key control parameters in tunnel fires
HONG Yao, SHI Congling, LI Junyi, LI Jia
Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, Institute of Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, China
全文: PDF(9795 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 为提升隧道火灾全物理场信息的预测速度以及解决隧道火灾关键控制参数的反向预测问题,该文构建了深度学习模型用于隧道火灾中全物理场和关键控制参数间的快速双向预测,使用了大型数值数据库训练所构建的模型,评估了模型对数据的学习能力及其预测能力。结果表明:经过 100 个训练周期后,使用所提出的双向预测模型和数据集取得了良好的训练收敛效果,物理场和关键控制参数在训练集上均达到结果快速重现。模型训练完成后,隧道火灾的平均温度场和 6 项隧道火灾的关键控制参数得到了基本的预测,预测结果同时涵盖了隧道的几何信息和物理信息。该研究结果可为隧道火灾演化规律的快速预测提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
洪瑶
史聪灵
李俊毅
李佳
关键词 隧道火灾深度学习快速预测物理场关键控制参数    
Abstract:[Objective] Tunnel fires pose a serious threat to life and property. The prediction of tunnel fires could reduce the risk and loss from thermal disasters. Computational fluid dynamics (CFD) provides a strong tool for quantitatively analyzing tunnel fires. However, CFD calculations are time-consuming, and reverse prediction from physical fields to key control parameters using the governing equation is impossible. To improve the prediction efficiency of tunnel fire information and solve the reverse prediction problem of key control parameters in tunnel fires, this paper proposes a deep learning model for fast bidirectional prediction between the entire physical fields and key control parameters of tunnel fires.[Methods] In this study, a deep learning model based on an encoder and a decoder is constructed, in which the encoder is used to construct the mapping from the physical fields to the key control parameters, and the decoder is used to construct the mapping from the key control parameters to the physical fields. In the model training process, the input of the encoder and the output of the decoder are required to be as close as possible, and the output of the encoder and the input of the decoder are also required to be as close as possible. The mathematical differences between them are therefore defined as the loss function. In this way, the encoder and the decoder form a cyclic structure. Data processing approaches are proposed so that all physical fields have a unified format and all key control parameters have the same distribution. [Results] The proposed model is trained using a large high-resolution numerical database with different cases under various key control parameters. The data learning ability and prediction capacity of the deep learning model are evaluated. With the increase of the training epoch, the calculated temperature field and key control parameters increasingly agree with the true temperature field and key control parameters. After 100 training epochs, the loss function almost converges, and the proposed bidirectional prediction model with the constructed dataset achieves good training convergence. In addition, the physical fields and key control parameters can be reproduced on the training set. After the completion of model training, the prediction performance of the deep learning model is tested. The average temperature field of tunnel fires and the six key parameters of tunnel fires are accurately predicted, and the predictions encompass the geometric and physical information of the tunnel. [Conclusions] Overall, this article proposes a deep learning network model based on the characteristics of tunnel fires for predicting various physical fields and key control parameters of tunnel fires. This study can be applied for the rapid acquisition of the full physical fields of tunnel fires, which helps design ventilation systems in tunnels and risk evaluation. In addition, another application is to retrieve the key control parameters of tunnel fires, which helps to quickly obtain the key control parameters according to the recorded infrared temperature field in the postinvestigation of tunnel fires. The above application scenarios can provide theoretical bases and new ideas for the prevention and control of tunnel fires.
Key wordstunnel fire    deep learning    rapid prediction    physical field    key control parameters
收稿日期: 2024-01-16      出版日期: 2024-05-14
基金资助:国家自然科学基金面上项目(52204245);北京市自然科学基金面上项目(8232017);中国安全生产科学研究院基本科研业务费专项经费(2023JBKY05)
通讯作者: 史聪灵,教授级高级工程师,E-mail:shicl@chinasafety.ac.cn     E-mail: shicl@chinasafety.ac.cn
引用本文:   
洪瑶, 史聪灵, 李俊毅, 李佳. 隧道火灾中物理场与关键控制参数间的快速双向预测[J]. 清华大学学报(自然科学版), 2024, 64(6): 1024-1031.
HONG Yao, SHI Congling, LI Junyi, LI Jia. Rapid bidirectional prediction between the physical fields and key control parameters in tunnel fires. Journal of Tsinghua University(Science and Technology), 2024, 64(6): 1024-1031.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.22.015  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I6/1024
[1] CARVEL R. A review of tunnel fire research from Edinburgh[J]. Fire Safety Journal, 2019, 105:300-306.
[2] CASEY N. Fire incident data for Australian road tunnels[J]. Fire Safety Journal, 2020, 111:102909.
[3] 田向亮,钟茂华,刘畅,等.不同阻塞条件下的隧道火灾全尺寸试验研究[J].煤炭科学技术, 2021, 49(2):93-101. TIAN X L, ZHONG M H, LIU C, et al. Experimental study on safety full-scale of tunnel fire disaster under different blocking conditions[J]. Coal Science and Technology, 2021, 49(2):93-101.(in Chinese)
[4] 卢平,丛北华,廖光煊,等.纵向通风水平隧道火灾烟气流动特性研究[J].中国工程科学, 2004, 6(10):59-64. LU P, CONG B H, LIAO G X, et al. Study of fire smoke flow characteristics of horizontal tunnel using longitudinal ventilation[J]. Strategic Study of CAE, 2004, 6(10):59-64.(in Chinese)
[5] 陈长坤,王玮玉,康恒,等.不同火源面积下隧道火灾温度场试验与数值模拟分析[J].中国公路学报, 2018, 31(6):235-243. CHEN C K, WANG W Y, KANG H, et al. Experimental and numerical simulation analysis of temperature field of tunnel fire with different fire source areas[J]. China Journal of Highway and Transport, 2018, 31(6):235-243.(in Chinese)
[6] 安伟光,广大庆,陈凡宝.油罐车行驶速度对隧道火灾温度及烟气蔓延的影响[J].消防科学与技术, 2023, 42(6):742-746. AN W G, GUANG D Q, CHEN F B. The effect of tank truck speed on the temperature distribution and smoke spread of tunnel fire[J]. Fire Science and Technology, 2023, 42(6):742-746.(in Chinese)
[7] HONG Y, KANG J H, FU C J. Rapid prediction of mine tunnel fire smoke movement with machine learning and supercomputing techniques[J]. Fire Safety Journal, 2022, 127:103492.
[8] ZHANG X N, WU X Q, HUANG X Y. Smart real-time forecast of transient tunnel fires by a dual-agent deep learning model[J]. Tunnelling and Underground Space Technology, 2022, 129:104631.
[9] HU P, PENG X Y, TANG F. Prediction of maximum ceiling temperature of rectangular fire against wall in longitudinally ventilation tunnels:Experimental analysis and machine learning modeling[J]. Tunnelling and Underground Space Technology, 2023, 140:105275.
[10] MCGRATTAN K B, BAUM H R, REHM R G, et al. Fire dynamics simulator:Technical reference guide:NISTIR 6467[R]. Gaithersburg, USA:National Institute of Standards and Technology, 2000.
[11] HURLEY M J, GOTTUK D, HALL J R, et al. SFPE handbook of fire protection engineering[M]. 5th ed. New York, USA:Springer, 2016.
[12] MCGRATTAN K B, MCDERMOTT R, WEINSCHENK C, et al. Fire dynamics simulator technical reference guide volume 1:Mathematical model[R]. Gaithersburg, USA:National Institute of Standards and Technology, 2013.
[13] AGHDAM H H, HERAVI E J. Guide to convolutional[JP1] neural networks[M]. New York, USA:Springer, 2017:51.
[14] ZHANG K, SUN M, HAN T X, et al. Residual networks of residual networks:Multilevel residual networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(6):1303-1314.
[15] YAROTSKY D. Error bounds for approximations with deep ReLU networks[J]. Neural Networks, 2017, 94:103-114.
[16] YAZAN E, TALU M F. Comparison of the stochastic gradient descent based optimization techniques[C]//Proceedings of 2017 International Artificial Intelligence and Data Processing Symposium. Malatya, Turkey, 2017:1-5.
[17] SARANYA C, MANIKANDAN G. A study on normalization techniques for privacy preserving data mining[J]. International Journal of Engineering and Technology, 2013, 5(3):2701-2704.
[18] SVSSTRUNK S, BUCKLEY R, SWEN S. Standard RGB color spaces[C]//Proceedings of the 7th Color Imaging Conference. Scottsdale, USA, 1999:127-134.
[19] HOCHREITER S. The vanishing gradient problem during learning recurrent neural nets and problem solutions[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1998, 6(2):107-116.
[20] SIRIGNANO W A. Driving mechanisms for combustion instability[J]. Combustion Science and Technology, 2015, 187(1-2):162-205.
[1] 吴金, 吴顺川, 王焘, 席雅允. 基于深度学习的复杂地层钻孔图像岩体结构面识别方法[J]. 清华大学学报(自然科学版), 2024, 64(7): 1136-1146.
[2] 王旭, 巩晓雯, 黄其帅, 陈炳瑞, 杨世强, 杨旭, 张延杰. 基于深度机器视觉的香炉山隧洞钻孔多维特征精准定位[J]. 清华大学学报(自然科学版), 2024, 64(7): 1278-1292.
[3] 罗振敏, 张利冬, 宋泽阳. 基于全连接的长短期记忆网络实现采空区CO多步预测[J]. 清华大学学报(自然科学版), 2024, 64(6): 940-952.
[4] 黄贲, 康飞, 唐玉. 基于目标检测的混凝土坝裂缝实时检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1078-1086.
[5] 代鑫, 黄弘, 汲欣愉, 王巍. 基于机器学习的城市暴雨内涝时空快速预测模型[J]. 清华大学学报(自然科学版), 2023, 63(6): 865-873.
[6] 苗旭鹏, 张敏旭, 邵蓥侠, 崔斌. PS-Hybrid: 面向大规模推荐模型训练的混合通信框架[J]. 清华大学学报(自然科学版), 2022, 62(9): 1417-1425.
[7] 梅杰, 李庆斌, 陈文夫, 邬昆, 谭尧升, 刘春风, 王东民, 胡昱. 基于目标检测模型的混凝土坯层覆盖间歇时间超时预警[J]. 清华大学学报(自然科学版), 2021, 61(7): 688-693.
[8] 管志斌, 王晓萌, 辛伟, 王嘉捷. 源代码缺陷检测数据生成及标注方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1240-1245.
[9] 韩坤, 潘海为, 张伟, 边晓菲, 陈春伶, 何舒宁. 基于多模态医学图像的Alzheimer病分类方法[J]. 清华大学学报(自然科学版), 2020, 60(8): 664-671,682.
[10] 王志国, 章毓晋. 监控视频异常检测:综述[J]. 清华大学学报(自然科学版), 2020, 60(6): 518-529.
[11] 蒋文斌, 王宏斌, 刘湃, 陈雨浩. 基于AVX2指令集的深度学习混合运算策略[J]. 清华大学学报(自然科学版), 2020, 60(5): 408-414.
[12] 余传明, 原赛, 胡莎莎, 安璐. 基于深度学习的多语言跨领域主题对齐模型[J]. 清华大学学报(自然科学版), 2020, 60(5): 430-439.
[13] 宋欣瑞, 张宪琦, 张展, 陈新昊, 刘宏伟. 多传感器数据融合的复杂人体活动识别[J]. 清华大学学报(自然科学版), 2020, 60(10): 814-821.
[14] 徐祖华, 黄彦春, 陈铭豪, 赵均, 邵之江. 基于FPAA模拟神经网络的快速预测控制算法[J]. 清华大学学报(自然科学版), 2019, 59(5): 394-402.
[15] 张思聪, 谢晓尧, 徐洋. 基于dCNN的入侵检测方法[J]. 清华大学学报(自然科学版), 2019, 59(1): 44-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn