Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (5): 852-859    DOI: 10.16511/j.cnki.qhdxxb.2024.26.004
  动力与能源 本期目录 | 过刊浏览 | 高级检索 |
冲击式水轮机水斗设计方法及性能优化
孙启轩, 谭磊
清华大学 能源与动力工程系, 水圈科学与水利工程全国重点实验室, 北京 100084
Bucket design method and performance optimization of a Pelton turbine
SUN Qixuan, TAN Lei
State Key Laboratory of Hydro-Science and Engineering, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(8649 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 雅鲁藏布江下游蕴藏着丰富的水电资源, 具有高水头、大容量等特点, 冲击式水轮机是优选机型。转轮是冲击式水轮机的核心过流部件和做功部件, 水斗形状对转轮性能至关重要。该文将水斗三维几何形状的构造线划分为轮廓线、过流剖面线和引导线3类, 给定若干特征参数, 提出了一种可控参数的冲击式水轮机水斗三维设计方法。选择水斗深度、宽度增量、出水边角度、分水刃角度和缺口圆直径等参数对冲击式水轮机水斗开展正交优化。由极差分析可知, 宽度增量对转轮效率的影响最大, 对出水边角度、缺口圆直径和水斗深度的影响较小, 对分水刃角度的影响最小。优化后, 冲击式水轮机的水力效率增加了6.71 %。相比于原型水斗, 优化水斗的总扭矩更大, 在扭矩减少至0的过程中平缓过渡, 有利于提高机组的水力效率和运行稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 冲击式水轮机水斗设计方法正交优化数值模拟    
Abstract:[Objective] The Yarlung Zangbo River contains numerous hydropower resources, with high head and large flow rates in the downstream region, which is conducive to power generation by Pelton turbines. Pelton turbines convert the kinetic energy generated from the water potential energy into mechanical energy for rotating a runner. The runner is the core component for the flow and work of the Pelton turbine, and the shape of its bucket is crucial for the runner's performance, which is uniformly arranged along the hub of the runner. As the surface shape of the bucket is complex, several parameters are required to determine its geometry model, undoubtedly posing a huge obstacle to work. In this paper, a design method is proposed to address the problem of designing and improving the bucket based on the Bézier curve. The design space is simplified as much as possible based on geometry, and the Bézier curves are utilized for designing the bucket shape. An orthogonal analysis is applied for the optimization of bucket parameters, while the computational fluid dynamics method is employed for analyzing the energy characteristics and three-dimensional flow field of the Pelton turbine. In the bucket design method, the three-dimensional geometry of the bucket can be divided into contour, flow profile, and guidelines, and several characteristic parameters can be determined for those lines. Each type of line includes several biquadratic Bézier curve connections. The number of characteristic line parameters is decreased by establishing a connection between five control points of the Bézier curves. Thus, a three-dimensional design method for the bucket of the Pelton turbine is proposed based on the five controlled characteristic parameters. The main optimization parameters are chosen by the geometry. Subsequently, bucket depth, width increment, outflow angle, splitter angle, and cutout diameter are chosen to conduct orthogonal optimization for the Pelton turbine bucket. For further analysis of the flow characteristics of the optimized bucket, the runner is modeled based on the optimum parameters. In the computational fluid dynamics method, grids are meshed by ICEM, and computational fluid dynamics is performed with ANSYS FLUENT. The results of the polar analysis and three-dimensional unsteady flow field revealed that width had the maximum influence on runner efficiency; outflow angle, cutout diameter, and bucket depth had a smaller influence; and splitting angle had the minimum influence. After optimization, the hydraulic efficiency of the Pelton turbine was increased by 6.71 %. The optimized bucket demonstrated a larger torque peak than the prototype bucket. The bucket always showed large torque when its torque decreased to zero and exhibited smoother curve transition and longer work time. Thus, the optimized bucket demonstrated greater total torque than the prototype bucket; furthermore, the former's high-pressure area was larger, making the energy conversion of water from the nozzle to the bucket more effective. This paper proposes a three-dimensional design method for the Pelton turbine bucket based on the controlled characteristic parameters. The energy performance of the Pelton turbine was enhanced by the orthogonal optimization and three-dimensional flow simulation.
Key wordsPelton turbine    bucket    design method    orthogonal optimization    numerical simulation
收稿日期: 2023-08-27      出版日期: 2024-04-22
基金资助:国家重点研发计划项目(2020YFB1901401);热能动力技术重点实验室开放基金资助项目(TPL2021A02)
通讯作者: 谭磊,特别研究员,E-mail:tanlei@mail.tsinghua.edu.cn     E-mail: tanlei@mail.tsinghua.edu.cn
引用本文:   
孙启轩, 谭磊. 冲击式水轮机水斗设计方法及性能优化[J]. 清华大学学报(自然科学版), 2024, 64(5): 852-859.
SUN Qixuan, TAN Lei. Bucket design method and performance optimization of a Pelton turbine. Journal of Tsinghua University(Science and Technology), 2024, 64(5): 852-859.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.26.004  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I5/852
[1] 国家能源局. "十四五"现代能源体系规划[EB/OL].[2024-01-04]. http://zfxxgk.nea.gov.cn/2022-01/29/c_1310524241.htm. National Energy Administration. 14th Five-Year Plan for modern energy system[EB/OL].[2024-01-04]. http://zfxxgk.nea.gov.cn/2022-01/29/c_1310524241.htm. (in Chinese)
[2] 国家能源局. "十四五"可再生能源发展规划[EB/OL].[2024-01-04]. http://zfxxgk.nea.gov.cn/2021-10/21/c_1310611148.htm. National Energy Administration. 14th Five-Year Plan for renewable energy development[EB/OL].[2024-01-04]. http://zfxxgk.nea.gov.cn/2021-10/21/c_1310611148.htm. (in Chinese)
[3] 杨康. 冲击式水轮机及其内部不良流动的数值模拟研究[D]. 哈尔滨:哈尔滨工业大学, 2014. YANG K. Numerical simulation on some phenomena of the badbehaved flow in the Pelton turbine[D]. Harbin:Harbin Institute of Technology, 2014. (in Chinese)
[4] ZENG C J, XIAO Y X, WANG Z W, et al. Numerical analysis of a Pelton bucket free surface sheet flow and dynamic performance affected by operating head[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2017, 231(3):182-196.
[5] 蒋勇其. 冲击式水轮机流固耦合数值模拟研究[D]. 武汉:武汉大学, 2017. JIANG Y Q. Flow-induced vibration analysis of Pelton turbine[D]. Wuhan:Wuhan University, 2017. (in Chinese)
[6] XIAO Y X, WANG Z W, ZHANG J, et al. Numerical and experimental analysis of the hydraulic performance of a prototype Pelton turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2014, 228(1):46-55.
[7] KUMASHIRO T, FUKUHARA H, TANI K. Unsteady CFD simulation for bucket design optimization of Pelton turbine runner[J]. IOP Conference Series:Earth and Environmental Science, 2016, 49(2):022003.
[8] 葛新峰, 孙洁, 蔡建国, 等. 磨蚀对水斗式水轮机的水斗型线及性能影响的研究[J]. 中国电机工程学报, 2021, 41(21):7391-7402. GE X F, SUN J, CAI J G, et al. Study of the erosion influence on bucket profile and performance of Pelton turbine[J]. Proceedings of the CSEE, 2021, 41(21):7391-7402. (in Chinese)
[9] ANAGNOSTOPOULOS J S, PAPANTONIS D E. A fast Lagrangian simulation method for flow analysis and runner design in Pelton turbines[J]. Journal of Hydrodynamics, Ser. B, 2012, 24(6):930-941.
[10] ŽIDONIS A. Optimisation and efficiency improvement of Pelton hydro turbine using computational fluid dynamics and experimental testing[D]. Lancaster:Lancaster University, 2015.
[11] 葛新峰, 孙洁, 李阳, 等. 泥沙直径和浓度对水斗式水轮机转轮的磨损特性[J]. 中国电机工程学报, 2021, 41(14):5025-5033. GE X F, SUN J, LI Y, et al. Erosion characteristics of sediment diameter and concentration on the runner of Pelton turbines[J]. Proceedings of the CSEE, 2021, 41(14):5025-5033. (in Chinese)
[12] SMIRNOV P E, MENTER F R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term[J]. Journal of Turbomachinery, 2009, 131(4):041010.
[13] 曾崇济. 冲击式水轮机内流特性及流动干扰现象研究[D]. 北京:清华大学, 2020. ZENG C J. Research on the internal flow characteristic and flow interference in the Pelton turbine[D]. Beijing:Tsinghua University, 2020. (in Chinese)
[14] 刘明, 谭磊, 曹树良. 基于分段四次速度矩分布的叶片式气液混输泵导叶设计方法[J]. 机械工程学报, 2022, 58(10):280-288. LIU M, TAN L, CAO S L. Design method of diffuser in rotodynamic multiphase pump based on fourth-order distribution of velocity moment[J]. Journal of Mechanical Engineering, 2022, 58(10):280-288. (in Chinese)
[1] 杨世宇, 林远方, 于海育, 徐向华, 梁新刚. 多温度限制点条件下燃油热管理系统热回油特性分析[J]. 清华大学学报(自然科学版), 2024, 64(5): 841-851.
[2] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[3] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[4] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[5] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[6] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[7] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[8] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[9] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[10] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[11] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[12] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[13] 任静, 李雪英, 郭欣欣, 王善友, 许浩楠. 燃气涡轮高效冷却技术及设计方法发展趋势[J]. 清华大学学报(自然科学版), 2022, 62(4): 794-801.
[14] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[15] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn