Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (3): 432-441    DOI: 10.16511/j.cnki.qhdxxb.2024.26.005
  生物摩擦学前沿 本期目录 | 过刊浏览 | 高级检索 |
人工韧带体外摩擦磨损测量方法
黄秀玲1, 郑晔1, 赖卫国2, 朱俊俊1, 华子恺1
1. 上海大学 机电工程与自动化学院, 上海 200444;
2. 上海利格泰生物科技有限公司, 上海 201712
Measurement method of in vitro friction and wear of artificial ligaments
HUANG Xiuling1, ZHENG Ye1, LAI Weiguo2, ZHU Junjun1, HUA Zikai1
1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China;
2. Shanghai Ligatech Bioscience Co., Ltd., Shanghai 201712, China
全文: PDF(17328 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 人工韧带是韧带重建术中的重要植入物,临床上常见因摩擦磨损而导致人工韧带断裂失效等不良事件,因此磨损被认为是影响人工韧带使用寿命的重要因素之一。针对目前人工韧带体外摩擦磨损测量方法不明确,以及缺少摩擦磨损情况量化研究方法等问题,该文对人工韧带进行了2.0×106次体外磨损试验,测量人工韧带磨损量并获取其磨损表面形貌,对磨损产生的磨屑进行提取与表征。结果显示:经2.0×106次磨损后,人工韧带磨损率为(6.94±2.30) mg/106次;人工韧带磨损后表面部分组织起毛且编织状结构受损,丝线排序松散并出现断裂;从润滑介质中提取的磨屑大部分呈类球状,少部分呈纤维条状,且小尺寸磨屑较多,大尺寸磨屑较少。该研究结果可为完善人工韧带的体外磨损测试标准提供有力的参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄秀玲
郑晔
赖卫国
朱俊俊
华子恺
关键词 人工韧带摩擦磨损测量方法磨屑分离提取    
Abstract:[Objective] Artificial ligaments are crucial implants in ligament reconstruction surgery, and in clinical practice, adverse events such as fracture and failure of artificial ligaments are commonly observed because of friction and wear. The wear of artificial ligaments not only weakens the performance of the prosthesis but also potentially causes iatrogenic arthropathy. Therefore, investigating the friction and wear performance of artificial ligaments in vitro is important. Currently, neither domestic nor international standards have specified methods for measuring the wear of artificial ligaments. Furthermore, quantitative research methods for studying friction and wear are limited; moreover, only a few studies have been conducted on the methods for assessing the wear of artificial ligaments. [Methods] In this study, artificial ligaments were subjected to 2.0×106 cycles in the in vitro friction wear test following the YY/T 0965—2014 standard. Subsequently, three wear test groups were established in accordance with the YY/T 1426.1—2016 standard. A loading control group was also established simultaneously to mitigate the weight errors caused by ligament water absorption. Artificial ligaments were periodically cleaned and weighed in accordance with the YY/T 1426.2—2016. Furthermore, the gravimetric method was employed to measure and analyze the amount of wear on the artificial ligaments. The micromorphology of the artificial ligaments after wear was observed using a stereoscopic microscope, and the wear debris generated by abrasion in 1.5×106—2.0×106 wear cycles was extracted and sent to a scanning electron microscope for observation. The wear debris was characterized according to ASTM F1877-16. [Results] In the three test groups, the amount of wear of the artificial ligaments increased linearly, with an average wear rate of (6.94 ±2.30)mg/106 cycles. After abrading the artificial ligaments, some surface tissues appeared rough, and the braided structure was damaged. The filament sorting was loose and fractured, similar to the failed ligaments removed in the clinic. Additionally, the wear process of artificial ligaments produced white and opaque wear debris, mainly consisting of irregular particles ranging from nanometer to micrometer sizes. Most of the extracted wear debris appeared as spheres, and only a small portion was in the form of fibrous strips. The majority of the wear debris was small, whereas only a little of them was large. Most of the extracted wear debris was spherical, whereas a little was in the form of fibrous strips. There were more small-sized and fewer large-sized wear debris, which were relatively less biologically active and had a lower risk of triggering joint diseases. The results of this study provided a strong reference for refining the standards for in vitro friction wear test of artificial ligaments. [Conclusions] The wear rates of artificial ligaments are comparable to that of hip and knee prostheses reported in some studies. This should not be overlooked, as its biotribological behavior directly affects the outcomes of replacement surgery. Therefore, establishing scientific and rational in vitro wear measurements and wear debris analysis has great scientific value and significance in accurately predicting the clinical wear of artificial ligaments.
Key wordsartificial ligaments    friction and wear    measurement method    wear debris isolation and extraction
收稿日期: 2023-09-30      出版日期: 2024-03-06
基金资助:国家自然科学基金资助项目(62203287)
通讯作者: 华子恺,副研究员,E-mail:zikai_hua@shu.edu.cn;赖卫国,工程师,E-mail:weiguolai@ligatech.com.cn     E-mail: zikai_hua@shu.edu.cn;weiguolai@ligatech.com.cn
作者简介: 黄秀玲(1978—),女,副教授。
引用本文:   
黄秀玲, 郑晔, 赖卫国, 朱俊俊, 华子恺. 人工韧带体外摩擦磨损测量方法[J]. 清华大学学报(自然科学版), 2024, 64(3): 432-441.
HUANG Xiuling, ZHENG Ye, LAI Weiguo, ZHU Junjun, HUA Zikai. Measurement method of in vitro friction and wear of artificial ligaments. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 432-441.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.26.005  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I3/432
  
  
  
  
  
  
  
  
  
  
  
  
[1] 王圣昊, 何耀华. 前交叉韧带修复技术研究进展[J]. 国际骨科学杂志, 2023, 44(4):203-206. WANG S H, HE Y H. Research progress on the repair technique of anterior cruciate ligament[J]. International Journal of Orthopaedics, 2023, 44(4):203-206. (in Chinese)
[2] 史简铭. 自体韧带和人工韧带治疗交叉韧带损伤的疗效对比[D]. 郑州:郑州大学, 2021. SHI J M. Comparative study on the effect of autogenous ligament and artificial ligament in the treatment of cruciate ligament injury[D]. Zhengzhou:Zhengzhou University, 2021. (in Chinese)
[3] SCHILATY N D, BATES N A, NAGELLI C V, et al. Sex-based differences of medial collateral ligament and anterior cruciate ligament strains with cadaveric impact simulations[J]. Orthopaedic Journal of Sports Medicine, 2018, 6(4):2325967118765215.
[4] 赵旭辉, 王芳. 人工韧带材料表面修饰及在膝关节交叉韧带重建中的应用[J]. 中国组织工程研究与临床康复, 2010, 14(42):7915-7918. ZHAO X H, WANG F. Surface modification of artificial ligaments and their application in knee cruciate ligament reconstruction[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(42):7915-7918. (in Chinese)
[5] 万超, 郝智秀, 温诗铸, 等. 前交叉韧带移植物种类及拉力影响的有限元模拟[J]. 清华大学学报(自然科学版), 2014, 54(10):1282-1287. WAN C, HAO Z X, WEN S Z, et al. Three-dimensional finite element simulations of the long-term effects of hamstring tendon graft type and tensioning on anterior cruciate ligament reconstruction[J]. Journal of Tsinghua University (Science & Technology), 2014, 54(10):1282-1287. (in Chinese)
[6] 关国平, 关红涛, 王璐. 韧带损伤及人工韧带应用与研究[J]. 生物医学工程学进展, 2013, 34(4):234-238. GUAN G P, GUAN H T, WANG L. Ligament injury and application and research of artificial ligaments[J]. Progress in Biomedical Engineering, 2013, 34(4):234-238. (in Chinese)
[7] 李君芳. 人工韧带重建与膝关节前交叉韧带的运动损伤[J]. 中国组织工程研究与临床康复, 2010, 14(12):2221-2224. LI J F. Artificial ligament reconstruction and movement injury to anterior cruciate ligament of the knee joint[J]. Chinese Journal of Tissue Engineering Research, 2010, 14(12):2221-2224. (in Chinese)
[8] JIANG H, SHANG X, WU H T, et al. Resveratrol downregulates PI3K/Akt/mTOR signaling pathways in human U251 glioma cells[J]. Journal of Experimental Therapeutics and Oncology, 2009, 8(1):25-33.
[9] 陈天午, 陈世益. 人工韧带用于前交叉韧带修复重建:目前产品与经验[J]. 中国修复重建外科杂志, 2020, 34(1):1-9. CHEN T W, CHEN S Y. Artificial ligaments applied in anterior cruciate ligament repair and reconstruction:Current products and experience[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2020, 34(1):1-9. (in Chinese)
[10] 陈世益, 陈天午. 采用新一代人工韧带重建前十字韧带的关键技术和不良事件:基于改良Delphi法制订的中国专家共识(二)[J]. 中国修复重建外科杂志, 2022, 36(9):1047-1055. CHEN S Y, CHEN T W. Core techniques and adverse events in anterior cruciate ligament reconstruction using a new generation of artificial ligaments:The consensus of Chinese specialists based on a modified Delphi method (Part 2)[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2022, 36(9):1047-1055. (in Chinese)
[11] 袁拥军, 何国础, 岑建平, 等. 先进人工韧带加强系统人工韧带与自体骨-髌腱-骨重建膝前交叉韧带的早期临床疗效比较[J]. 上海医学, 2009, 32(7):598-601. YUAN Y J, HE G C, CEN J P, et al. Anterior cruciate ligament reconstruction with ligament advanced reinforcement system artificial ligament and autogenous bone-patellar tendon-bone:A comparison of early clinical outcomes[J]. Shanghai Medical Journal, 2009, 32(7):598-601. (in Chinese)
[12] YAHIA L. Ligaments and ligamentoplasties[M]. Heidelberg:Springer, 1997.
[13] GUIDOIN M F, MAROIS Y, BEJUI J, et al. Analysis of retrieved polymer fiber based replacements for the ACL[J]. Biomaterials, 2000, 21(23):2461-2474.
[14] OLSON E J, KANG J D, FU F H, et al. The biochemical and histological effects of artificial ligament wear particles:In vitro and in vivo studies[J]. The American Journal of Sports Medicine, 1988, 16(6):558-570.
[15] VIATEAU V, MANASSERO M, ANAGNOSTOU F, et al. Biological and biomechanical evaluation of the ligament advanced reinforcement system (LARS AC) in a sheep model of anterior cruciate ligament replacement:A 3-month and 12-month study[J]. Arthroscopy:The Journal of Arthroscopic and Related Surgery, 2013, 29(6):1079-1088.
[16] GLEZOS C M, WALLER A, BOURKE H E, et al. Disabling synovitis associated with LARS artificial ligament use in anterior cruciate ligament reconstruction[J]. The American Journal of Sports Medicine, 2012, 40(5):1167-1171.
[17] 国家食品药品监督管理总局. 无源外科植入物人工韧带专用要求:YY/T 0965-2014[S]. 北京:中国标准出版社, 2014. China Food and Drug Administration. Implants for surgery:Artificial ligaments:YY/T 0965-2014[S]. Beijing:Standards Press of China, 2014. (in Chinese)
[18]国家食品药品监督管理总局. 外科植入物全膝关节假体的磨损第1部分:载荷控制的磨损试验机的载荷和位移参数及相关的试验环境条件:YY/T 1426.1-2016[S]. 北京:中国标准出版社, 2016. China Food and Drug Administration. Implants for surgery-Wear of total knee-joint prostheses-Part 1:Loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for test:YY/T 1426.1-2016[S]. Beijing:Standards Press of China, 2016. (in Chinese)
[19]国家食品药品监督管理总局. 外科植入物全膝关节假体的磨损第2部分:测量方法:YY/T 1426.2-2016[S]. 北京:中国标准出版社, 2016. China Food and Drug Administration. Implants for surgery-Wear of total knee-joint prostheses-Part 2:Methods of measurement:YY/T 1426.2-2016[S]. Beijing:Standards Press of China, 2016. (in Chinese)
[20] American Society for Testing and Materials. Standard practice for characterization of particles:ASTM F1877-16[S]. West Conshohocken:American Society for Testing and Materials,2016.
[21] VISENTIN M, STEA S, SQUARZONI S, et al. Isolation and characterization of wear debris generated in patients wearing polyethylene hylamer inserts, Gamma irradiated in air[J]. Journal of Biomaterials Applications, 2005, 20(2):103-121.
[22] GRUPP T M, FRITZ B, KUTZNER I, et al. Vitamin E stabilised polyethylene for total knee arthroplasty evaluated under highly demanding activities wear simulation[J]. Acta Biomaterialia, 2017, 48:415-422.
[23] AFFATATO S, RUGGIERO A, JABER S A, et al. Wear behaviours and oxidation effects on different UHMWPE acetabular cups using a hip joint simulator[J]. Materials, 2018, 11(3):433.
[24] FALOTICO G G, TAKATA P, JACOB L S, et al. Comparative biomechanical study of crosslinked polyethylene wear with 36-mm ceramic femoral heads and with 32-mm metal femoral heads[J]. Revista Brasileira de Ortopedia, 2020, 55(5):597-604.
[25] 张洪玉, 蒋向前, BLUNT L, 等. 人工髋关节柄磨损评定中的三维表面形貌测量[J]. 应用基础与工程科学学报, 2012, 20(1):139-148. ZHANG H Y, JIANG X Q, BLUNT L, et al. The application of 3-D surface metrology in characterization of femoral stem wear[J]. Journal of Basic Science and Engineering, 2012, 20(1):139-148. (in Chinese)
[26] BAHÇE E, EMIR E. Wear and validation of posterior stabilized knee prosthesis with the knee simulator[J]. Materials Technology, 2021, 36(6):356-363.
[27] YANG S Y, REN W P, PARK Y, et al. Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation[J]. Biomaterials, 2002, 23(17):3535-3543.
[28] GREEN T R, FISHER J, STONE M, et al. Polyethylene particles of a 'critical size' are necessary for the induction of cytokines by macrophages in vitro[J]. Biomaterials, 1998, 19(24):2297-2302.
[29] BOLTON C W, BRUCHMAN W C. The GORE-TEX expanded polytetrafluoroethylene prosthetic ligament. An in vitro and in vivo evaluation[J]. Clinical Orthopaedics and Related Research, 1985(196):202-213.
[30] 陈天午, 陈世益. 走出人工韧带重建前交叉韧带的历史误区:总结中国成功经验[J]. 中国医学前沿杂志(电子版), 2020, 12(9):1-7. CHEN T W, CHEN S Y. Walk out of the historical misunderstanding of artificial ligament used for anterior cruciate ligament reconstruction:Sum up China's successful experience[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2020, 12(9):1-7. (in Chinese)
[1] 岑佳佳, 张德坤, 陈琴, 张欣悦, 冯存傲, 冯海燕, 陈凯. 滑液组分对“软-软”配副关节材料摩擦学行为的影响[J]. 清华大学学报(自然科学版), 2024, 64(3): 454-470.
[2] 吉政甲, 靳洪允, 骆晚玥, 周可可, 侯书恩, 解国新. 造粒氧化锆增强复合材料的摩擦学性能及优化[J]. 清华大学学报(自然科学版), 2020, 60(8): 639-647.
[3] 裴普成, 陈嘉瑶, 吴子尧. 锂离子电池自放电机理及测量方法[J]. 清华大学学报(自然科学版), 2019, 59(1): 53-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn