Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (8): 1502-1508    DOI: 10.16511/j.cnki.qhdxxb.2024.26.011
  碳中和 本期目录 | 过刊浏览 | 高级检索 |
异戊烷喷淋塔内凝华碳捕集的一维模拟
靳鑫, 王兵
清华大学 航天航空学院, 北京 100084
One-dimensional numerical analysis of CO2 capture by desublimation in an isopentane spray tower
JIN Xin, WANG Bing
School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2980 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 二氧化碳(CO2)捕集是碳减排技术的研究热点,其中低温凝华碳捕集技术具有碳捕集率高、绿色环保和二氧化碳捕集纯度高等优势,应用前景广阔。但目前凝华碳捕集的研究相对不足,且基于固体媒介凝华二氧化碳的技术途径具有显著的局限性。该文采用基于喷淋低温液滴的凝华方法改进二氧化碳捕集技术,建立了一维异戊烷喷淋塔模型并模拟计算了稳态工作特性,通过分析喷淋塔内的温度场和浓度场,探究了喷淋塔的碳捕集率变化规律及其影响因素。结果表明:越小的液滴直径、越低的液滴初始温度和较长的气液相互作用时间对提升喷淋塔的碳捕集率具有重要作用。此外,该文还揭示了喷淋塔内二氧化碳的浓度场是凝华过程的主控因素,而塔内凝华的发展程度及碳捕集率则取决于液滴初始温度和气液相互作用时间。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
靳鑫
王兵
关键词 异戊烷喷淋塔低温碳捕集技术气固凝华数值模拟    
Abstract:[Objective] Carbon capture technology is a focal point in the realm of carbon capture, utilization, and storage. Enhancing CO2 capture efficiency and reducing energy consumption are pivotal for the viability of industrial applications and the attainment of the “carbon peaking and carbon neutrality” objective. Cryogenic CO2 capture by desublimation is a post-combustion capture technology that has the advantages of high CO2 capture rate, environmental friendliness, and the production of high-purity CO2 products. Consequently, it holds substantial potential for both academic research and industrial applications. Nevertheless, conventional CO2 desublimation capture methods using solid media present limitations, including challenges in collecting and removing solid CO2, compromised heat transfer between solid media and gaseous CO2, and corrosion issues. Although utilizing liquid media for desublimating and capturing CO2 can overcome these challenges, pertinent research remains insufficient. [Methods] This study employs the cryogenic carbon capture method, utilizing liquid media to desublimate CO2. It establishes a one-dimensional model for the isopentane spray tower to examine the temperature and CO2 concentration fields within the tower. The aim is to elucidate the relationships and physical mechanisms governing the tower's overall CO2 capture rate in relation to the initial conditions of the inlet gas, isopentane droplets, and spray tower settings. [Results] Numerical results from the one-dimensional isopentane spray tower revealed the following: (1) The temperature variation of isopentane droplets was minimal and primarily occurs around the gas inlet area, indicating that desublimation was contingent upon CO2 concentration fields and mass diffusion. (2) The temperature of the CO2 mixture gas undergone significant changes throughout the tower at a constant rate, highlighting the dominance of gas temperature fields by thermal convection with negligible effects from droplet desublimation on gas temperature. (3) The initial diameters and temperatures of isopentane droplets significantly affected the spray tower's overall CO2 capture rate. Initial diameters smaller than 2.0-mm and initial temperatures below 150.00 K for isopentane droplets result in a CO2 capture exceeding 90% for a 2.0-m high spray tower, validating the efficacy and efficiency of the isopentane spray tower in cryogenic CO2 capture. (4) The spray tower's overall CO2 capture rate was influenced by the tower's height, initial velocity and temperature of isopentane droplets, and inlet gas velocities. The efficiency of the desublimation process was strongly dependent on the heat transfer efficiency and contact time between isopentane droplets and CO2 mixture gases. [Conclusions] Through numerical simulation and investigation of temperature and CO2 concentration fields within the isopentane spray tower, this study unveils and analyzes factors influencing the tower's CO2 capture rate and the pertinent mechanisms of CO2 desublimation on liquid droplets. Additionally, it demonstrates the effectiveness of the isopentane spray tower in capturing CO2, emphasizing the substantial potential for cryogenic CO2 capture using liquid spray in the field of carbon capture.
Key wordsisopentane spray tower    cryogenic CO2 capture technology    desublimation    numerical simulation
收稿日期: 2023-08-25      出版日期: 2024-07-19
通讯作者: 王兵,教授,E-mail:wbing@tsinghua.edu.cn     E-mail: wbing@tsinghua.edu.cn
引用本文:   
靳鑫, 王兵. 异戊烷喷淋塔内凝华碳捕集的一维模拟[J]. 清华大学学报(自然科学版), 2024, 64(8): 1502-1508.
JIN Xin, WANG Bing. One-dimensional numerical analysis of CO2 capture by desublimation in an isopentane spray tower. Journal of Tsinghua University(Science and Technology), 2024, 64(8): 1502-1508.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.26.011  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I8/1502
[1] International Energy Agency. CO2 emissions from fuel combustion:Highlights[R]. Paris:International Energy Agency, 2014.
[2] International Energy Agency. Global energy review:CO2 emissions in 2021[R]. Paris:International Energy Agency, 2022.
[3] BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and storage (CCS):The way forward[J]. Energy&Environmental Science, 2018, 11(5):1062-1176.
[4] OLAJIRE A A. CO2 capture and separation technologies for end-of-pipe applications:A review[J]. Energy, 2010, 35(6):2610-2628.
[5] FAZLOLLAHI F, SAEIDI S, SAFDARI M S, et al. Effect of operating conditions on cryogenic carbon dioxide removal[J]. Energy Technology, 2017, 5(9):1588-1598.
[6] SIFAT N S, HASELI Y. A critical review of CO2 capture technologies and prospects for clean power generation[J]. Energies, 2019, 12(21):4143.
[7] SONG C F, LIU Q L, DENG S, et al. Cryogenic-based CO2 capture technologies:State-of-the-art developments and current challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 101:265-278.
[8] FONT-PALMA C, CANN D, UDEMU C. Review of cryogenic carbon capture innovations and their potential applications[J]. C-Journal of Carbon Research, 2021, 7(3):58.
[9] MAASS O, BARNES W H. Some thermal constants of solid and liquid carbon dioxide[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1926, 111(757):224-244.
[10] GIAUQUE W F, EGAN C J. Carbon dioxide. The heat capacity and vapor pressure of the solid. The heat of sublimation. Thermodynamic and spectroscopic values of the entropy[J]. The Journal of Chemical Physics, 1937, 5(1):45-54.
[11] MANZHELII V G, TOLKACHEV A M, BAGATSKII M I, et al. Thermal expansion, heat capacity, and compressibility of solid CO2[J]. Physica Status Solidi (b), 1971, 44(1):39-49.
[12] COOK T, DAVEY G. The density and thermal conductivity of solid nitrogen and carbon dioxide[J]. Cryogenics, 1976, 16(6):363-369.
[13] JÄGER A, SPAN R. Equation of state for solid carbon dioxide based on the Gibbs free energy[J]. Journal of Chemical&Engineering Data, 2012, 57(2):590-597.
[14] BABAR M, BUSTAM M A, ALI A, et al. Thermodynamic data for cryogenic carbon dioxide capture from natural gas:A review[J]. Cryogenics, 2019, 102:85-104.
[15] CLODIC D, YOUNES M. A new method for CO2 capture:Frosting CO2 at atmospheric pressure[M]//GALE J, KAYA Y. Greenhouse Gas Control Technologies-6th International Conference. Oxford:Pergamon, 2003:155-160.
[16] TUINIER M J, VAN SINT ANNALAND M, KRAMER G J, et al. Cryogenic CO2 capture using dynamically operated packed beds[J]. Chemical Engineering Science, 2010, 65(1):114-119.
[17] HOLMES A S, RYAN J M. Cryogenic distillative separation of acid gases from methane:4318723[P]. 1982-03-09.
[18] SONG C F, KITAMURA Y, LI S H. Evaluation of Stirling cooler system for cryogenic CO2 capture[J]. Applied Energy, 2012, 98:491-501.
[19] SONG C F, KITAMURA Y, LI S H, et al. Analysis of CO2 frost formation properties in cryogenic capture process[J]. International Journal of Greenhouse Gas Control, 2013, 13:26-33.
[20] WANG Y N, PFOTENHAUER J M, ZHI X Q, et al. Transient model of carbon dioxide desublimation from nitrogen-carbon dioxide gas mixture[J]. International Journal of Heat and Mass Transfer, 2018, 127:339-347.
[21] HART A, GNANENDRAN N. Cryogenic CO2 capture in natural gas[J]. Energy Procedia, 2009, 1(1):697-706.
[22] BAXTER L, BAXTER A, BURT S. Cryogenic CO2 capture as a cost-effective CO2 capture process[C]//Proceedings of the 26th Annual International Pittsburgh Coal Conference. Pittsburgh, USA:International Pittsburgh Coal Conference, 2009:762-775.
[23] BIRD R B, STEWART W E, LIGHTFOOT E N. Transport phenomena[M]. 2nd ed. New York:John Wiley&Sons, Inc, 2006.
[24] ROWLEY R L, WILDING W V, OSCARSON J L, et al. DIPPR 801 databases[DB/OL].(2023-01-01)[2023-08-01]. https://www.aiche.org/dippr.
[25] Aspen Plus®. Aspen Plus® V11[CP/OL].(2023-01-01)[2023-08-01]. https://www.aspentech.com/en/products/engineering/aspen-plus.
[1] 胡丽伟, 李慧闯, 杨佳杭, 梁澳, 张文武. 动静叶间距对气液固混输叶片泵性能及流动特性的影响分析[J]. 清华大学学报(自然科学版), 2024, 64(8): 1424-1434.
[2] 崔靖奇, 吴顺川, 程海勇, 王涛, 姜关照, 浦仕江, 任子健. 滇中引水软岩隧洞围岩位移时序预测[J]. 清华大学学报(自然科学版), 2024, 64(7): 1215-1225.
[3] 陈念, 张强, 汪小刚, 王玉杰, 王鹏, 王丹. 深埋隧洞地下水分层水力联系地表深孔监测技术与工程应用[J]. 清华大学学报(自然科学版), 2024, 64(7): 1226-1237.
[4] 杨世宇, 林远方, 于海育, 徐向华, 梁新刚. 多温度限制点条件下燃油热管理系统热回油特性分析[J]. 清华大学学报(自然科学版), 2024, 64(5): 841-851.
[5] 孙启轩, 谭磊. 冲击式水轮机水斗设计方法及性能优化[J]. 清华大学学报(自然科学版), 2024, 64(5): 852-859.
[6] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[7] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[8] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[9] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[10] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[11] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[12] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[13] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[14] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[15] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn