Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (7): 1136-1146    DOI: 10.16511/j.cnki.qhdxxb.2024.26.020
  论文 本期目录 | 过刊浏览 | 高级检索 |
基于深度学习的复杂地层钻孔图像岩体结构面识别方法
吴金1, 吴顺川1,2,3,4, 王焘2,3,4, 席雅允1
1. 北京科技大学 土木与资源工程学院, 北京 100083;
2. 昆明理工大学 国土资源工程学院, 昆明 650093;
3. 自然资源部高原山地地质灾害预报预警与生态保护修复重点实验室, 昆明 650093;
4. 云南省高原山地地质灾害预报预警与生态保护修复重点实验室, 昆明 650093
Deep learning-based method for rock discontinuity recognition in complex stratum borehole images
WU Jin1, WU Shunchuan1,2,3,4, WANG Tao2,3,4, XI Yayun1
1. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China;
3. Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China, Kunming 650093, China;
4. Yunnan Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Kunming 650093, China
全文: PDF(14787 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 基于钻孔电视图像的结构面调查是一种应用广泛的勘测方法, 可为岩体质量评价和工程设计提供基础数据支撑。 然而, 复杂地层中结构面形态各异, 宽度差异大且对比度低, 传统算法难以准确完整地识别。 为此, 该文提出一种基于改进的U-Net网络模型的钻孔电视图像结构面识别方法。 首先, 采用更深层次的编码-解码网络结构, 处理对比度低导致的结构面局部断裂问题, 并结合通道注意力机制和残差模块提高编码阶段各层级对结构面特征的提取能力。 其次, 在较低层级跳跃连接中引入多尺度空间注意力模块, 提高对复杂形态结构面处理能力, 丰富编码层结构面语义特征; 同时, 通道注意力也被用于充分融合来自编码层和解码层的多通道结构面信息。 然后, 通过利用与地质作用下地层变形类似的透视变形等方式扩增钻孔图像数据, 并结合焦点损失和Dice损失进行联合训练, 以减轻图像数据不平衡问题, 增强网络泛化能力。 最后, 将同一钻孔图像作为训练集, 邻近钻孔图像作为测试集进行消融和对比实验。 结果表明, 相比于已有相关网络模型, 该文所提方法能更有效地针对复杂地层钻孔图像, 较准确、 完整地识别各类岩体结构面, 精确率和召回率均超过77.00%, 比改进前的U-Net网络分割效果分别提高了7.96%和14.99%。 该文方法可为现场结构面钻孔调查以及岩体质量评价提供技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴金
吴顺川
王焘
席雅允
关键词 钻孔图像结构面识别深度学习U-Net神经网络注意力机制    
Abstract:[Objective] Discontinuities are vital components of rock mass, significantly affecting its strength, deformation, and seepage characteristics. They provide essential parameters for rock mass classification and engineering design. Borehole television technology is a widely used method for capturing these discontinuities within the rock mass, offering high-resolution in situ images. However, in complex strata, the discontinuities appear in various morphologies with significant width differences. Coupled with the rapid texture changes on rock wall faces, these discontinuities create a highly uneven contrast, making it challenging for traditional algorithms to recognize them accurately. To address this challenge, this study introduces an improved deep learning network model specifically designed for borehole images of complex strata. [Methods] The proposed model, based on the U-Net architecture, incorporates a deeper encoding-decoding network structure. This structure effectively handles semantic information related to discontinuity breaks caused by uneven contrast. The model integrates channel attention mechanisms and residual modules, enhancing feature extraction capabilities at different levels in the encoding stage. In addition, the channel attention mechanism fuses multichannel discontinuity information from both encoding and decoding layers. A multiscale spatial attention module introduced in the lower-level skip connection improves the ability to process complex morphological discontinuities and enriches the semantic features of discontinuities in the coding layer. In this study, the borehole image data are augmented in various ways, such as using perspective deformation similar to the stratum deformation under geological action. This study also employs joint training with focal loss and Dice loss to handle imbalanced image data. The generalization ability of the network model is thoroughly validated through ablation studies and comparative experiments using the same borehole image as the training set and neighboring borehole images as the test set. For comprehensive quantitative evaluation, this study uses several metrics, including precision, recall, F1-Score, and F2-Score. [Results] Our experimental evaluation, conducted on a self-made borehole image dataset, indicated that compared to several common image segmentation network models, our proposed model significantly improved the recognition capability of rock discontinuities in borehole images from complex strata while ensuring faster computational efficiency. The precision and recall on the test set for the proposed model reached 78.23% and 77.85%, respectively. This marked an improvement in segmentation performance by 7.96% and 14.99%, respectively, compared with the basic U-Net model. Both the F1-Score and F2-Score were close to 78%. Although the model size was 18.13 MB and had approximately twice the parameters of the base U-Net, the deeper network hierarchy reduced the number of channels of shallow high-resolution feature maps, resulting in a reduction in computational load. The model achieved an FPS of 85, which was slightly higher than that of the basic U-Net model. [Conclusions] This study meticulously improves upon the basic U-Net model by strategically incorporating the attention mechanism, residual connections, and multiscale convolutions. The improved model exhibits high accuracy and robustness. It effectively confronts the challenges associated with balancing detailed features and high-level semantics owing to significant width differences in discontinuities within complex strata. Furthermore, it addresses issues related to incomplete extraction of discontinuities caused by uneven contrast between discontinuities and rock wall surfaces. As such, this improved model provides strong technical support for the automatic identification of rock discontinuities in on-site borehole investigations.
Key wordsborehole images    rock discontinuity recognition    deep learning    U-Net network    attention mechanism
收稿日期: 2023-10-30      出版日期: 2024-06-25
基金资助:国家自然科学基金项目(51934003); 云南省重大科技专项(202102AF080001); 云南省创新团队资助项目(202105AE160023)
通讯作者: 吴顺川, 教授, E-mail:wushunchuan@ustb.edu.cn     E-mail: wushunchuan@ustb.edu.cn
引用本文:   
吴金, 吴顺川, 王焘, 席雅允. 基于深度学习的复杂地层钻孔图像岩体结构面识别方法[J]. 清华大学学报(自然科学版), 2024, 64(7): 1136-1146.
WU Jin, WU Shunchuan, WANG Tao, XI Yayun. Deep learning-based method for rock discontinuity recognition in complex stratum borehole images. Journal of Tsinghua University(Science and Technology), 2024, 64(7): 1136-1146.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.26.020  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I7/1136
[1] 吴顺川,李利平,张晓平.岩石力学[M].北京:高等教育出版社, 2021. WU S C, LI L P, ZHANG X P. Rock mechanics[M]. Beijing:Higher Education Press, 2021.(in Chinese)
[2] RIQUELME A J, ABELLÁN A, TOMÁS R, et al. A new approach for semi-automatic rock mass joints recognition from 3-D point clouds[J]. Computers&Geosciences, 2014, 68:38-52.
[3] ASSOUS S, ELKINGTON P, CLARK S, et al. Automated detection of planar geologic features in borehole images[J]. Geophysics, 2014, 79(1):D11-D19.
[4] 汪进超,王川婴,韩增强,等.基于钻孔摄像技术的珊瑚礁完整性评价分析[J].中南大学学报(自然科学版), 2016, 47(5):1619-1624. WANG J C, WANG C Y, HAN Z Q, et al. Analysis of coral reef integrity based on borehole camera technology[J]. Journal of Central South University (Science and Technology), 2016, 47(5):1619-1624.(in Chinese)
[5] BAE D S, KIM K S, KOH Y K, et al. Characterization of joint roughness in granite by applying the scan circle technique to images from a borehole televiewer[J]. Rock Mechanics and Rock Engineering, 2011, 44(4):497-504.
[6] 王川婴,钟声,孙卫春.基于数字钻孔图像的结构面连通性研究[J].岩石力学与工程学报, 2009, 28(12):2405-2410. WANG C Y, ZHONG S, SUN W C. Study of connectivity of discontinuities of borehole based on digital borehole images[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12):2405-2410.(in Chinese)
[7] AL-SIT W, Al-NUAIMY W, MARELLI M, et al. Visual texture for automated characterisation of geological features in borehole televiewer imagery[J]. Journal of Applied Geophysics, 2015, 119:139-146.
[8] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66.
[9] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6):679-698.
[10] 吴剑,冯少孔,李宏阶.钻孔成像中结构面自动判读技术研究[J].岩土力学, 2011, 32(3):951-957. WU J, FENG S K, LI H J. Study of automatically extracting structural plane parameters from borehole images[J]. Rock and Soil Mechanics, 2011, 32(3):951-957.(in Chinese)
[11] LI L, YU C, HAN Z Q, et al. Automatic identification of the rock-soil interface and solution fissures from optical borehole images based on color features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(10):3862-3873.
[12] 汪进超,王川婴,胡胜,等.孔壁钻孔图像的结构面参数提取方法研究[J].岩土力学, 2017, 38(10):3074-3080. WANG J C, WANG C Y, HU S, et al. A new method for extraction of parameters of structural surface in borehole images[J]. Rock and Soil Mechanics, 2017, 38(10):3074-3080.(in Chinese)
[13] 李清波,杜朋召.基于边缘阈值分割的钻孔图像RQD自动分析方法研究[J].岩土工程学报, 2020, 42(11):2153-2160. LI Q B, DU P Z. Automatic RQD analysis method based on information recognition of borehole images[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11):2153-2160.(in Chinese)
[14] 邹先坚,王川婴,韩增强,等.全景钻孔图像中结构面全自动识别方法研究[J].岩石力学与工程学报, 2017, 36(8):1910-1920. ZOU X J, WANG C Y, HAN Z Q, et al. Fully automatic identifying the structural planes with panoramic images of boreholes[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8):1910-1920.(in Chinese)
[15] 夏丁,葛云峰,唐辉明,等.数字钻孔图像兴趣区域分割与岩体结构面特征识别[J].地球科学, 2020, 45(11):4207-4217. XIA D, GE Y F, TANG H M, et al. Segmentation of region of interest and identification of rock discontinuities in digital borehole images[J]. Earth Science, 2020, 45(11):4207-4217.(in Chinese)
[16] 张新钰,高洪波,赵建辉,等.基于深度学习的自动驾驶技术综述[J].清华大学学报(自然科学版), 2018, 58(4):438-444. ZHANG X Y, GAO H B, ZHAO J H, et al. Overview of deep learning intelligent driving methods[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(4):438-444.(in Chinese)
[17] LI S T, SONG W W, FANG L Y, et al. Deep learning for hyperspectral image classification:An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6690-6709.
[18] HAO S J, ZHOU Y, GUO Y R. A brief survey on semantic segmentation with deep learning[J]. Neurocomputing, 2020, 406:302-321.
[19] ZHANG Y, CHEN J Q, LI Y L. Segmentation and quantitative analysis of geological fracture:A deep transfer learning approach based on borehole televiewer image[J]. Arabian Journal of Geosciences, 2022, 15(3):300.
[20] ZHANG Y, CHEN J Q, LI Y L, et al. Deep ensemble learning for quantitative geological fracture analysis using borehole televiewer images[J]. Journal of Applied Geophysics, 2023, 213:105046.
[21] HAN S Y, XIAO X, SONG B Y, et al. Automatic borehole fracture detection and characterization with tailored faster R-CNN and simplified Hough transform[J]. Engineering Applications of Artificial Intelligence, 2023, 126:107024.
[22] LIU C C, KIM J, SONG J J, et al. Intelligent recognition and identification of fracture types and parameters for borehole images based on developed convolutional neural networks and post-processing[J]. Engineering Fracture Mechanics, 2023, 292:109624.
[23] 黄达,钟助.基于单个钻孔孔壁电视图像确定地下岩体结构面产状的普适数学方法[J].地球科学--中国地质大学学报, 2015, 40(6):1101-1106. HUANG D, ZHONG Z. A universal mathematical method for determining the occurrence of underground rock discontinuity based on TV picture of wall of a single borehole rock discontinuity based on TV picture of wall of a single borehole[J]. Earth Science-Journal of China University of Geosciences, 2015, 40(6):1101-1106.(in Chinese)
[24] 韩增强,王川婴,周济芳,等.基于钻孔图像的孔壁岩体完整性计算及在裂隙岩体灌浆效果评价中的应用[J].岩土工程学报, 2016, 38(S2):245-249. HAN Z Q, WANG C Y, ZHOU J F, et al. Calculation of borehole wall rock integrity based on borehole images and its application in evaluation of grouting effect in fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2):245-249.(in Chinese)
[25] 张帅军,汪进超,韩增强.基于钻孔图像的结构面分布分维数计算方法[J].人民长江, 2020, 51(5):203-209. ZHANG S J, WANG J C, HAN Z Q. Fractal dimension calculation method on rock mass structural plane distribution based on borehole image[J]. Yangtze River, 2020, 51(5):203-209.(in Chinese)
[26] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
[27] RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany:Springer, 2015:234-241.
[28] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA:IEEE, 2018:7132-7141.
[29] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA:IEEE, 2016:770-778.
[30] LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany:Springer, 2018:404-419.
[31] WOO S, PARK J, LEE J Y, et al. CBAM:Convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany:Springer, 2018:3-19.
[32] BLOICE M D, ROTH P M, HOLZINGER A. Biomedical image augmentation using Augmentor[J]. Bioinformatics, 2019, 35(21):4522-4524.
[33] 周迅,李永龙,周颖玥,等.基于改进DeepLabV3+网络的坝面裂缝检测方法[J].清华大学学报(自然科学版), 2023, 63(7):1153-1163. ZHOU X, LI Y L, ZHOU Y Y, et al. Dam surface crack detection method based on improved DeepLabV3+network[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(7):1153-1163.(in Chinese)
[34] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++:A nested U-Net architecture for medical image segmentation[C]//4th International Workshop on Deep Learning in Medical Image Analysis and 8th International Workshop on Multimodal Learning for Clinical Decision Support. Granada, Spain:Springer, 2018:3-11.
[35] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J/OL]. arXiv.(2017-12-05)[2023-07-12]. arXiv:1706.05587v3.
[36] OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net:Learning where to look for the pancreas[J/OL]. arXiv.(2018-05-20)[2023-06-16]. arXiv:1804.03999v3.
[37] JHA D, SMEDSRUD P H, JOHANSEN D, et al. A comprehensive study on colorectal polyp segmentation with ResUNet++, conditional random field and test-time augmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(6):2029-2040.
[1] 王旭, 巩晓雯, 黄其帅, 陈炳瑞, 杨世强, 杨旭, 张延杰. 基于深度机器视觉的香炉山隧洞钻孔多维特征精准定位[J]. 清华大学学报(自然科学版), 2024, 64(7): 1278-1292.
[2] 罗振敏, 张利冬, 宋泽阳. 基于全连接的长短期记忆网络实现采空区CO多步预测[J]. 清华大学学报(自然科学版), 2024, 64(6): 940-952.
[3] 洪瑶, 史聪灵, 李俊毅, 李佳. 隧道火灾中物理场与关键控制参数间的快速双向预测[J]. 清华大学学报(自然科学版), 2024, 64(6): 1024-1031.
[4] 张雪芹, 刘岗, 王智能, 罗飞, 吴建华. 基于多特征融合和深度学习的微观扩散预测[J]. 清华大学学报(自然科学版), 2024, 64(4): 688-699.
[5] 赵兴旺, 侯哲栋, 姚凯旋, 梁吉业. 基于注意力机制的两阶段融合多视图图聚类[J]. 清华大学学报(自然科学版), 2024, 64(1): 1-12.
[6] 张名芳, 李桂林, 吴初娜, 王力, 佟良昊. 基于轻量型空间特征编码网络的驾驶人注视区域估计算法[J]. 清华大学学报(自然科学版), 2024, 64(1): 44-54.
[7] 张洋, 江铭虎. 基于句法树节点嵌入的作者识别方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1390-1398.
[8] 黄贲, 康飞, 唐玉. 基于目标检测的混凝土坝裂缝实时检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1078-1086.
[9] 周迅, 李永龙, 周颖玥, 王皓冉, 李佳阳, 赵家琦. 基于改进DeepLabV3+网络的坝面裂缝检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1153-1163.
[10] 逯波, 段晓东, 袁野. 面向跨模态检索的自监督深度语义保持Hash[J]. 清华大学学报(自然科学版), 2022, 62(9): 1442-1449.
[11] 苗旭鹏, 张敏旭, 邵蓥侠, 崔斌. PS-Hybrid: 面向大规模推荐模型训练的混合通信框架[J]. 清华大学学报(自然科学版), 2022, 62(9): 1417-1425.
[12] 杨宏宇, 张梓锌, 张良. 基于并行特征提取和改进BiGRU的网络安全态势评估[J]. 清华大学学报(自然科学版), 2022, 62(5): 842-848.
[13] 梅杰, 李庆斌, 陈文夫, 邬昆, 谭尧升, 刘春风, 王东民, 胡昱. 基于目标检测模型的混凝土坯层覆盖间歇时间超时预警[J]. 清华大学学报(自然科学版), 2021, 61(7): 688-693.
[14] 管志斌, 王晓萌, 辛伟, 王嘉捷. 源代码缺陷检测数据生成及标注方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1240-1245.
[15] 韩坤, 潘海为, 张伟, 边晓菲, 陈春伶, 何舒宁. 基于多模态医学图像的Alzheimer病分类方法[J]. 清华大学学报(自然科学版), 2020, 60(8): 664-671,682.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn