Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (7): 1090-1099    DOI: 10.16511/j.cnki.qhdxxb.2024.26.028
  论文 本期目录 | 过刊浏览 | 高级检索 |
考虑SSI及地形效应的整体渡槽隔震性能分析
韩钟骐1, 敖选年2, 蒋继彬2, 王海深1, 潘鹏1,3
1. 清华大学 土木工程系, 北京 100084;
2. 云南省滇中引水工程有限公司, 昆明 650000;
3. 清华大学 土木工程安全与耐久教育部重点实验室, 北京 100084
Seismic isolation analysis of integrated aqueduct considering soil-structure interaction and topographic effect
HAN Zhongqi1, Ao Xuannian2, JIANG Jibin2, WANG Haishen1, PAN Peng1,3
1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
2. Central Yunnan Water Diversion Engineering Co., Ltd., Kunming 650000, China;
3. Key Laboratory of Civil Engineering Safety and Durability of Ministry of Education of China, Tsinghua University, Beijing 100084, China
全文: PDF(8322 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 该文以滇中引水工程松林渡槽为例, 分析了桩-土相互作用(soil-structure interaction, SSI)及地形效应(主要为V形河谷效应)对隔震渡槽结构地震响应的影响。 采用大型通用有限元软件ABAQUS建模, 通过m法及等效刚度桩考虑SSI, 采用简化弹簧-质量模型考虑流固耦合作用。 结果表明: 考虑SSI后, 槽墩变形、 槽段间相对位移及支座变形有所增大, 其中支座变形接近设计限值, 有破坏风险。 考虑在V形河谷效应下水平偏振横波相对于水平面不同入射角的工况中, 渡槽结构响应的大小依次为: 水平入射、 45° 斜入射、 一致输入、 垂直入射, 其中45° 斜入射与一致输入相近; 段间相对位移及支座顺槽向显著变形, 为设计关注重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩钟骐
敖选年
蒋继彬
王海深
潘鹏
关键词 渡槽桩-土相互作用地形效应有限元模拟隔震    
Abstract:[Objective] An aqueduct is a simply supported bridge-like structure whose main purpose is to transport water over long-distance and difficult terrains. When an aqueduct is constructed in seismically active regions, base-isolation is often needed. However, current research on aqueducts that considers both the pier-soil interaction and topographic effects is lacking. This paper theoretically analysis the influences of pier-soil interaction and topographic effects (mainly V-shaped canyon effect) on the base-isolated Songlin aqueduct of Central Yunnan Water Division Project during an earthquake event. [Methods] The analysis is achieved through modelling using the universal large-scale finite element analysis (FEA) software ABAQUS. The soil-structure interaction (SSI) is simulated through m-method and the equal-stiffness pier method according to relevant standard and research, respectively. The m-method simplifies the SSI as a series of springs. The stiffness of each spring is related to the pier geometries and soil thickness considered. The fluid-structure interaction is simulated through simplified spring-mass model, which is a commonly used analytical model to simulate fluid-structure interaction. In this paper, the spring-mass model is modified for computational efficiency. The results of the modified and traditional spring-mass model are compared to verify the effectiveness of the modified model. The FEA model mainly consists of beam elements and the popular user-defined material database PQ-fiber is adopted in the analysis. Post-tensioning of the aqueduct is achieved through temperature-gradient and material expansion coefficient in ABAQUS. Three-dimensional earthquake actions selected from PEER database are inputted at the pier base of the model as accelerations to simulate the dynamic structural responses of the aqueduct. The V-shaped canyon effect is considered by transforming the time-history and peak ground acceleration (PGA) of the earthquake records. [Results] The structure periods of aqueduct were 2.81, 1.72 and 1.40 s for the first three deformation modes, respectively. The structure periods changed to 2.82, 1.75 and 1.44 s after the introduction of SSI, respectively. The FEA results indicated that the pier deformation, inter-span relative displacement and isolation bearing deformation were amplified after SSI was introduced. Amongst the parameters, the deformation of the isolation bearings was observed to approach its design limits. This posed the threats of isolation bearing failure during a seismic event. The flexure strength demands at the base of the piers are relatively insensitive to the introduction of SSI. It was also found that the higher the pier, the effects of SSI on inter-span relative displacement, isolation bearing deformation and pier-base flexural strength demand became more pronounced. [Conclusions] the introduction of SSI decreased the stiffness of pier-ground connection which resulted in the slight decrease of the structural period of the aqueduct. Parametric analysis of the angles of incidence between the horizontal surface and the horizontally-polarized shear waves produced due to V-shaped canyon effect demonstrated that the overall response of the Songlin aqueduct is greatest with the horizontal incidence, followed by the oblique incidence, uniform incidence and vertical incidence. It is also found that the inter-span relative displacement and isolation bearing deformation along the aqueduct direction can exceed their respective design limits and should be carefully checked in the design process.
Key wordsaqueduct    soil-structure interaction    topographic effect    finite element analysis    isolation
收稿日期: 2023-08-11      出版日期: 2024-06-25
基金资助:国家重点研发计划项目(2021YFB2600502); 云南省重大科技专项计划项目(202102AF080001)
通讯作者: 潘鹏, 教授, E-mail:panpeng@tsinghua.edu.cn     E-mail: panpeng@tsinghua.edu.cn
引用本文:   
韩钟骐, 敖选年, 蒋继彬, 王海深, 潘鹏. 考虑SSI及地形效应的整体渡槽隔震性能分析[J]. 清华大学学报(自然科学版), 2024, 64(7): 1090-1099.
HAN Zhongqi, Ao Xuannian, JIANG Jibin, WANG Haishen, PAN Peng. Seismic isolation analysis of integrated aqueduct considering soil-structure interaction and topographic effect. Journal of Tsinghua University(Science and Technology), 2024, 64(7): 1090-1099.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.26.028  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I7/1090
[1] 郑明燕.考虑SSI的减隔震简支桥梁(渡槽)建模及地震动力响应研究[D].武汉:中国地质大学, 2014. ZHENG M Y. Study on dynamic response of simply supported isolated bridge subjected to earthquake load considering soil-structural interaction[D]. Wuhan:China University of Geosciences, 2014.(in Chinese)
[2] 李正农,张盼盼,朱旭鹏,等.考虑桩-土动力相互作用的渡槽结构水平地震响应分析[J].土木工程学报, 2010, 43(12):137-143. LI Z N, ZHANG P P, ZHU X P, et al. Horizontal seismic response analysis of aqueduct with pier-soil dynamic interaction[J]. China Civil Engineering Journal, 2010, 43(12):137-143.(in Chinese)
[3] LI S, WANG M D, ZHANG F, et al. Near-source topographic effect on seismic responses of a multi-span continuous railway bridge crossing a symmetrical V-shaped canyon[J]. Journal of Central South University, 2022, 29(8):2434-2448.
[4] 郜新军,赵成刚,刘秦.地震波斜入射下考虑局部地形影响和土结动力相互作用的多跨桥动力响应分析[J].工程力学, 2011, 28(11):237-243. GAO X J, ZHAO C G, LIU Q. Seismic response analysis of multi-span viaduct considering topographic effect and soil-structure dynamic interaction based on inclined wave[J]. Engineering Mechanics, 2011, 28(11):237-243.(in Chinese)
[5] 李长春.大型渡槽抗震与隔震研究及应用[D].郑州:华北水利水电大学, 2020. LI C C. Research and application of seismic and isolation of large scale aqueduct[D]. Zhengzhou:North China University of Water Resources and Electric Power, 2020.(in Chinese)
[6] 周振纲.桩-土-渡槽结构相互作用的拟动力试验及计算研究[D].长沙:湖南大学, 2014. ZHOU Z G. Study on the pile-soil-aqueduct interaction by pseudo-dynamic test and computational analysis[D]. Changsha:Hunan University, 2014.(in Chinese)
[7] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.水工建筑物抗震设计标准:GB 51247-2018[S].北京:中国计划出版社, 2018.(查阅网上资料,未找到本条文献出版年信息,请确认) Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standard for seismic design of hydraulic structures:GB 51247-2018[S]. Beijing:China Planning Press, 2018.(in Chinese).
[8] 中华人民共和国住房和城乡建设部.建筑桩基技术规范:JGJ 94-2008[S].北京:中国建筑工业出版社, 2008. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for building pile foundations:JGJ 94-2008[S]. Beijing:China Architecture&Building Press, 2008.(in Chinese)
[9] HOUSNER G W. Dynamic pressures on accelerated fluid containers[J]. Bulletin of the Seismological Society of America, 1957, 47(1):15-35.
[10] 韩钟骐,敖选年,潘鹏,等.某高架大跨梁式渡槽抗震及隔震分析[J/OL].长江科学院院报.(2023-01-10)[2023-06-05]. http://kns.cnki.net/kcms/detail/42.1171.TV.20230504.1626.034.html. HAN Z Q, AO X N, PAN P, et al. Seismic and isolation analysis of an elevated large-span beam-supported aqueduct[J/OL]. Journal of Yangtze River Scientific Research Institute.(2023-01-10)[2023-06-05]. http://kns.cnki.net/kcms/detail/42.1171.TV.20230504.1626.034.html. (in Chinese)
[11] MOKHA A, CONSTANTINOU M, MEMBER A, et al. Teflon bearings in base isolation I:Testing[J]. Journal of Structural Engineering, 1990, 116(2):438-454.
[12] 曲哲.基于ABAQUS的用户自定义单轴滞回本构模型库[EB/OL].[2023-08-09]. http://qu-zhe.net/pqfiber.htm. QU Z. A collection of user-defined uniaxial hysteretic models for ABAQUS/Standard[EB/OL].[2023-08-09]. http://qu-zhe.net/pqfiber.htm. (in Chinese)
[13] ABAQUS/standard user's manual, version 6.11[R]. Providence:Dassault Systèmes Simulia Corporation, 2011.
[14] 中华人民共和国交通运输部.公路桥梁摩擦摆式减隔震支座:JT/T 852-2013[S].北京:人民交通出版社, 2013. Ministry of Transport of the People's Republic of China. Friction pendulum seismic isolation bearing for highway bridges:JT/T 852-2013[S]. Beijing:China Communications Press, 2013.(in Chinese)
[15] LIAO M, WU B, ZENG X Z, et al. Incremental dynamic analysis of the long-span continuous beam bridge considering the fluctuating frictional force of rubber bearing[J]. Advances in Bridge Engineering, 2021, 2(1):19.
[16] Pacific Earthquake Engineering Research Center. PEER ground motion database[EB/OL].[2023-08-09]. https://ngawest2.berkeley.edu.
[17] ZHANG N, GAO Y F, CAI Y Q, et al. Scattering of SH waves induced by a non-symmetrical V-shaped canyon[J]. Geophysical Journal International, 2012, 191(1):243-256.
[18] GAO Y F, ZHANG N, LI D Y, et al. Effects of topographic amplification induced by a U-shaped canyon on seismic waves[J]. Bulletin of the Seismological Society of America, 2012, 102(4):1748-1763.
[19] 蒋乐英,廖意辉,王志明,等.河谷差异地震作用下拱式倒虹吸地震响应分析[J].长江科学院院报, 2022, 39(12):117-121, 140. JIANG L Y, LIAO Y H, WANG Z M, et al. Seismic response of arch inverted siphon under the excitation of river valley differential earthquake[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(12):117-121, 140.(in Chinese)
[1] 石长征, 王廷超, 徐裕旺, 伍鹤皋, 白锐. 基于摩擦摆支座简化模型的明钢管减隔震分析[J]. 清华大学学报(自然科学版), 2024, 64(7): 1126-1135.
[2] 黄邦辉, 李志荣, 左澍琼, 邓开来, 辜文兰, 洪彧. 导水屏障调谐减震渡槽振动台试验[J]. 清华大学学报(自然科学版), 2024, 64(7): 1147-1156.
[3] 张延杰, 曾显志, 王海深, 韩钟骐, 邓开来, 潘鹏. 高地震烈度区复杂地质条件渡槽结构[J]. 清华大学学报(自然科学版), 2024, 64(7): 1264-1277.
[4] 赵海燕, 徐兴全, 于兴哲, 朱小武. 旋挖钻机钻杆键条焊接接头的残余应力[J]. 清华大学学报(自然科学版), 2014, 54(2): 191-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn