Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (7): 1179-1192    DOI: 10.16511/j.cnki.qhdxxb.2024.26.034
  论文 本期目录 | 过刊浏览 | 高级检索 |
含交叉断层深埋隧洞围岩衬砌外水压力物理模型试验
王如宾1, 王新越1, 张文全2, 徐卫亚1, 陆进彬2, 向天兵3
1. 河海大学 岩土工程科学研究所, 南京 210098;
2. 云南省滇中引水工程有限公司, 昆明 650000;
3. 中国电建集团昆明勘测设计研究院有限公司, 昆明 650051
Physical model experiment of external water pressure in lining surrounding rock of a deep tunnel with cross faults
WANG Rubin1, WANG Xinyue1, ZHANG Wenquan2, XU Weiya1, LU Jinbin2, XIANG Tianbing3
1. Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China;
2. Yunnan Dianzhong Water Diversion Engineering Company Limited, Kunming 650000, China;
3. Kunming Engineering Corporation Limited, Power China, Kunming 65005l, China
全文: PDF(14941 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 为揭示复杂地质条件下富水区深埋隧洞围岩-灌浆圈-衬砌复合系统的外水压力作用规律, 该文自行研制适用于深埋隧洞的大型高外水压力物理模型试验测试系统, 选取滇中引水工程昆明段松林隧洞TSLT-005与TSLT-006(TSLT-005、 TSLT-006为断层编号)交叉断层典型洞段为研究对象, 开展含交叉断层深埋隧洞衬砌外水压力物理模型试验, 揭示不同隧洞埋深、 不同地下水位及不同排水条件下, 衬砌的外水压力变化规律, 并给出各工况下的外水压力折减系数建议取值范围。 结果表明: 隧洞埋深和地下水位对衬砌结构的外水压力影响明显, 随着隧洞埋深的增大, 受高地应力影响, 围岩与灌浆圈自身的孔隙度与渗透性下降, 对地下水渗流势能起到较好的削弱作用, 导致衬砌的外水压力整体呈降低趋势; 随着地下水位升高, 衬砌全环的外水压力呈增大趋势, 且由于岩体中细颗粒会被高水压冲散, 因此形成较为连通发育的渗流通道, 渗压增速也会随地下水位的升高而增大; 设置衬砌排水孔可有效降低隧洞拱肩及其以上部位的外水压力, 当隧洞围岩存在交叉断层分布时, 断层带影响的衬砌部位外水压力降低效果受到一定削弱, 且对衬砌的外水压力分布影响较为明显, 在高地下水位工况下, 需重点关注“断层带”对围岩衬砌结构整体的影响范围; 当衬砌结构不排水时, 600 m埋深的外水压力折减系数约为200 m埋深的92%, 设置排水孔后, 600 m埋深的外水压力折减系数约为200 m埋深的85%; 当隧洞围岩存在交叉断层时, 在不排水情况下, 衬砌最不利点的外水压力折减系数建议取值0.95以上, 在排水条件下, 衬砌处的外水压力折减系数建议放宽至0.82; 最后, 利用有限元数值模拟方法对衬砌的外水压力物理模型试验结果进行验证, 在衬砌不排水工况下, 误差约为9.3%, 在衬砌排水工况下, 误差约为7.8%, 表明高外水压力作用物理模型装置和试验结果基本上合理可行。 该研究为富水区深埋隧洞工程的设计施工及运行安全提供科学参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王如宾
王新越
张文全
徐卫亚
陆进彬
向天兵
关键词 滇中引水隧洞物理模型试验高外水压力断层破碎带    
Abstract:[Objective] To elucidate the action mechanisms of external water pressure on the composite system of surrounding rock, grouting ring, and tunnel lining under complex geological conditions, a large-scale high external water pressure physical model experimental system suitable for deep-buried tunnels was developed. [Methods] The typical tunnel sections of the Songlin Tunnel TSLT-005 and TSLT-006 cross faults in the Kunming section of the Central Yunnan Water Diversion Project were selected as the research objects. The research encompassed physical model experiments on the external water pressure impacting the tunnel lining in deep-buried environments crossed by faults. The study aimed to determine the pressure variation laws across different tunnel depths, groundwater levels, and drainage conditions, proposing a range of recommended values for external water pressure reduction coefficients applicable under various operational scenarios. [Results] The findings indicated that tunnel depth and groundwater level substantially impact the external water pressure exerted on tunnel linings. An increase in tunnel depth enhanced the geostress effects, which, in turn, decreased both the porosity and permeability of the surrounding rock and grouting circle. This reduction effectively diminished the potential energy of groundwater seepage, thereby lowering the overall external water pressure on the lining. Conversely, rising groundwater levels increased the full-ring external water pressure on the lining, with high water pressure dispersing finer particles within the rock mass and fostering the development of more extensive seepage channels. This reduction also resulted in a higher rate of infiltration pressure increase correlated with rising groundwater levels. Furthermore, incorporating drainage holes into the lining substantially lowered the external water pressure affecting the upper shoulder areas of the tunnel. However, the presence of cross faults within the surrounding rock of the tunnel can mitigate the effectiveness of this pressure reduction, especially at the lining sections influenced by faults. The presence of cross faults had a significant impact on the water pressure outside the lining. Under high water table conditions, the influence range on the surrounding rock lining structure must be considered. Regarding specific recommendations, for tunnels at 600 m depth, the external water pressure reduction coefficient was approximately 92% of that at 200 m depth when undrained and approximately 85% when drained. In scenarios with cross faults, the external water pressure reduction coefficient at the most disadvantageous point of the lining without drainage should be no less than 0.95. With drainage, this coefficient can be more leniently adjusted to 0.82. Finally, the finite element numerical simulation method was used to verify the physical model test results of water pressure outside the lining, and the error was approximately 9.3% under the undrained lining condition and 7.8% under the drained lining condition, which indicated that the physical model experimental results were reasonable and feasible. [Conclusions] This research results provide crucial scientific guidance for designing, constructing, and safely managing deep-buried tunnel projects in regions with abundant water resources.
Key wordsCentral Yunnan Water Diversion Project tunnel    physical model experimental    high external water pressure    fault rupture zone
收稿日期: 2024-03-26      出版日期: 2024-06-25
基金资助:云南省重大科技专项计划项目(202102AF080001)
引用本文:   
王如宾, 王新越, 张文全, 徐卫亚, 陆进彬, 向天兵. 含交叉断层深埋隧洞围岩衬砌外水压力物理模型试验[J]. 清华大学学报(自然科学版), 2024, 64(7): 1179-1192.
WANG Rubin, WANG Xinyue, ZHANG Wenquan, XU Weiya, LU Jinbin, XIANG Tianbing. Physical model experiment of external water pressure in lining surrounding rock of a deep tunnel with cross faults. Journal of Tsinghua University(Science and Technology), 2024, 64(7): 1179-1192.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.26.034  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I7/1179
[1] 王秀英,王梦恕,张弥.山岭隧道堵水限排衬砌外水压力研究[J].岩土工程学报, 2005, 27(1):125-127. WANG X Y, WANG M S, ZHANG M. Research on regulating water pressure acting on mountain tunnels by blocking ground water and limiting discharge[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1):125-127.(in Chinese)
[2] 皇甫明,谭忠盛,王梦恕,等.暗挖海底隧道渗流量的解析解及其应用[J].中国工程科学, 2009, 11(7):66-70. HUANG F M, TAN Z S, WANG M S, et al. Analytical solutions for water inflow into an underwater tunnel and its application[J]. Strategic Study of CAE, 2009, 11(7):66-70.(in Chinese)
[3] 王志杰,何晟亚,王国栋,等.轴对称解析解对马蹄形隧道衬砌水压力及渗透量适用性研究[J].武汉大学学报(工学版), 2016, 49(1):54-59, 93. WANG Z J, HE S Y, WANG G D, et al. Study of applicability of an axisymmetric solution for water pressure and seepage flow on lining of horseshoe shaped tunnel[J]. Engineering Journal of Wuhan University, 2016, 49(1):54-59, 93.(in Chinese)
[4] 傅鹤林,安鹏涛,伍毅敏.断层与隧道位置关系对突涌水的影响研究[J].铁道工程学报, 2023, 40(9):78-83, 91. FU H L, AN P T, WU Y M. Study on the influence of the relationship between fault and tunnel location on water inrush[J]. Journal of Railway Engineering Society, 2023, 40(9):78-83, 91.(in Chinese)
[5] 郭鸿雁,纪亚英,方林,等.基于流固耦合分析的富水隧道外水压力与限量排放标准研究[J].岩土工程学报, 2019, 41(S1):165-168. GUO H Y, JI Y Y, FANG L, et al. External water pressures and limited emission standards of water-rich tunnels based on fluid-solid coupling analysis[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1):165-168.(in Chinese)
[6] LIU Z J, HUANG Y, ZHOU D, et al. Analysis of external water pressure for a tunnel in fractured rocks[J]. Geofluids, 2017, 2017:8618613.
[7] HUANG Y, FU Z M, CHEN J, et al. The external water pressure on a deep buried tunnel in fractured rock[J]. Tunnelling and Underground Space Technology, 2015, 48:58-66.
[8] SHIN J H, POTTS D M, ZDRAVKOVIC L. The effect of pore-water pressure on NATM tunnel linings in decomposed granite soil[J]. Canadian Geotechnical Journal, 2005, 42(6):1585-1599.
[9] 谢小帅,谢兴华,王小东,等.隔水层对深埋隧洞衬砌外水压力的影响研究[J].岩土工程学报, 2020, 42(S2):146-150. XIE X S, XIE X H, WANG X D, et al. Influences of aquiclude on external water pressures on linings of deep-buried tunnels[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2):146-150.(in Chinese)
[10] 杨为民,王浩,杨昕,等.高地应力-高水压下隧道突水模型试验系统的研制及应用[J].岩石力学与工程学报, 2017, 36(S2):3992-4001. YANG W M, WANG H, YANG X, et al. Development and application of model test system for water inrush in high-geostress and high hydraulic pressure tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2):3992-4001.(in Chinese)
[11] 相懋龙,阳军生,包德勇,等.隧道体外排水深埋中心水沟设计参数模型试验研究[J].岩石力学与工程学报, 2023, 42(6):1508-1519. XIANG M L, YANG J S, BAO D Y, et al. Model experimental study on engineering design parameters of deep buried central gutter for external drainage of tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(6):1508-1519.(in Chinese)
[12] 谭忠盛,曾超,李健,等.海底隧道支护结构受力特征的模型试验研究[J].土木工程学报, 2011, 44(11):99-105. TAN Z S, ZENG C, LI J, et al. Model test investigation on the mechanical characteristics of support structure of subsea tunnels[J]. China Civil Engineering Journal, 2011, 44(11):99-105.(in Chinese)
[13] 李术才,王凯,李利平,等.海底隧道新型可拓展突水模型试验系统的研制及应用[J].岩石力学与工程学报, 2014, 33(12):2409-2418. LI S C, WANG K, LI L P, et al. Development and application of an extendable model test system for water inrush simulation in subsea tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12):2409-2418.(in Chinese)
[14] 张庆松,王德明,李术才,等.断层破碎带隧道突水突泥模型试验系统研制与应用[J].岩土工程学报, 2017, 39(3):417-426. ZHANG Q S, WANG D M, LI S C, et al. Development and application of model test system for inrush of water and mud of tunnel in fault rupture zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3):417-426.(in Chinese)
[15] 胡耀青,赵阳升,杨栋.三维固流耦合相似模拟理论与方法[J].辽宁工程技术大学学报, 2007, 26(2):204-206. HU Y Q, ZHAO Y S, YANG D. Simulation theory&method of 3D solid-liquid coupling[J]. Journal of Liaoning Technical University, 2007, 26(2):204-206.(in Chinese)
[16] 张强勇,李术才,郭小红,等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学, 2008, 29(8):2126-2130. ZHANG Q Y, LI S C, GUO X H, et al. Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application[J]. Rock and Soil Mechanics, 2008, 29(8):2126-2130.(in Chinese)
[17] 李术才,周毅,李利平,等.地下工程流-固耦合模型试验新型相似材料的研制及应用[J].岩石力学与工程学报, 2012, 31(6):1128-1137. LI S C, ZHOU Y, LI L P, et al. Development and application of a new similar material for underground engineering fluid-solid coupling model test[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6):1128-1137.(in Chinese)
[18] 张振杰,张强勇,向文,等.复杂环境下新型流固耦合相似材料的研制及应用[J].中南大学学报(自然科学版), 2021, 52(11):4168-4180. ZHANG Z J, ZHANG Q Y, XIANG W, et al. Development and application of new-style hydro-mechanical coupling similar materials in complex environment[J]. Journal of Central South University (Science and Technology), 2021, 52(11):4168-4180.(in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn