Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (7): 1252-1263    DOI: 10.16511/j.cnki.qhdxxb.2024.26.037
  论文 本期目录 | 过刊浏览 | 高级检索 |
浅埋暗挖隧洞下穿高速公路路基沉降控制
李建贺1, 许然1, 高仝2, 欧阳林2, 杨正基2
1. 长江勘测规划设计研究有限责任公司 水利部水网工程与调度重点实验室, 武汉 430010;
2. 云南省滇中引水工程建设管理局, 昆明 650032
Settlement control of highway roadbed under shallow tunnel underpass construction conditions
LI Jianhe1, XU Ran1, GAO Tong2, OUYANG Lin2, YANG Zhengji2
1. Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources, Changjiang Survey Planning Design and Research Co., Ltd., Wuhan 430010, China;
2. Construction and Administration Bureau of Water Diversion Project in Central Yunnan, Kunming 650032, China
全文: PDF(22164 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 浅埋大跨度隧洞在软弱地层中下穿高速公路施工引起的路基沉降, 一直都是地下工程设计和施工面临的突出技术难题之一。 该文依托滇中引水工程香炉山隧洞, 采用现场监测和数值模拟的方法, 对隧洞下穿高速公路施工中的地表沉降、 围岩变形控制方案及过程进行探讨, 分析隧洞开挖过程中顶拱和路基的沉降变形规律及其影响因素。 研究结果表明: 浅埋大跨度隧洞掌子面前方围岩预收敛变形在顶拱总沉降变形中占比较高, 施作掌子面超前支护, 以减小掌子面挤出变形和前方围岩的预收敛变形, 对提高围岩稳定性、 降低地表沉降作用显著; 相比加强支护参数, 改善施工工艺对控制路基沉降的效果更为明显, 优化后的四台阶工法通过“预留核心土、 临时仰拱+竖撑支护、 同台阶左右错开”等方式, 有效约束围岩变形和应力释放, 充分调动支护结构的承载性能, 取得了较好的应用效果。 研究结果可为类似复杂条件下, 隧洞下穿高速公路施工提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李建贺
许然
高仝
欧阳林
杨正基
关键词 隧洞浅埋暗挖下穿高速公路结构安全路基沉降    
Abstract:[Objective] The settlement of roadbeds caused by the construction of shallow large-span tunnels passing under highways in soft strata has always been one of the outstanding technical difficulties encountered in underground engineering. The key to controlling the settlement of highway roadbeds is to restrain the deformation and stress release of tunnel surrounding rock as much as possible. This study thoroughly analyzes the scheme and process of controlling the settlement of roadbeds and the deformation of surrounding rock in the construction of tunnels under highways. Furthermore, it analyzes the settlement pattern and influencing factors of the top arch and roadbed in the tunnel excavation process. [Methods] Based on the Xianglushan Tunnel Project, this study adopts on-site monitoring and numerical simulation and conducts comparative experiments through four design and construction schemes to analyze the influences of systematic support, over-advance support, and construction process on the settlement and deformation of the tunnel vault and roadbed. [Results] The preconvergence deformation of the surrounding rock in front of the palm face of the shallow-buried large-span tunnel accounted for a relatively high percentage of the total displacement of the top arch. It accounted for about 79% of the total displacement of the top arch in the construction of the Xianglushan Tunnel under the highway. After applying overrun support, the extrusion deformation of the tunnel face and the preconvergence deformation of the surrounding rock in front of the tunnel were substantially reduced, the stability of the surrounding rock of the tunnel was improved, and the highway foundation settlement was reduced. The highway foundation settlement was reduced by about 26.4%, while the tunnel vault settlement was reduced by about 31.3%. Compared with strengthening the initial support parameters, the adjusted construction approach was more effective in controlling the settlement of highway roadbeds. The adjusted construction approach, which included measures such as reserving core soil, temporary arches with vertical supports, and staggered excavation on the same step, effectively restrained the release of surrounding rock stress and deformation, maximized the bearing capacity of the support structure. Compared with the four-step method, the improved construction method resulted in a 9.2% decrease in the roadbed settlement of the Shanghe Highway, a 30% increase in the average axial stress of the anchors of the tunnel system, and a 52.91% increase in the average axial stress of the steel arch. [Conclusions] In summary, the optimized design and construction program achieves better application results, effectively controlling the settlement of the tunnel vault and roadbed of the Shanghe Highway during the construction process of the Xianglushan Tunnel Project. Research findings provide valuable insights into the construction of tunnels beneath highways in similar complex environments.
Key wordstunnel    shallow excavation    underpass highway    structural safety    roadbed settlement
收稿日期: 2023-10-29      出版日期: 2024-06-25
基金资助:水利部重大科技项目(SKS-2022103); 云南省重大科技专项计划资助项目(202102AF080001-02); 水利青年人才发展资助项目(GFKY1502S22022)
引用本文:   
李建贺, 许然, 高仝, 欧阳林, 杨正基. 浅埋暗挖隧洞下穿高速公路路基沉降控制[J]. 清华大学学报(自然科学版), 2024, 64(7): 1252-1263.
LI Jianhe, XU Ran, GAO Tong, OUYANG Lin, YANG Zhengji. Settlement control of highway roadbed under shallow tunnel underpass construction conditions. Journal of Tsinghua University(Science and Technology), 2024, 64(7): 1252-1263.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.26.037  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I7/1252
[1] PECK R B. Deep excavations and tunneling in soft ground[C]//Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City, Mexico:State of the Art Report, 1969:225-290.
[2] ƠREILLY M P, NEW B M. Settlements above tunnels in the United Kingdom-their magnitude and prediction[C]//Proceedings of Tunnelling. London, UK:Institution of Mining and Metallurgy, 1982:173-181.
[3] MAIR R J, TAYLOR R N, BRACEGIRDLE A. Subsurface settlement profiles above tunnels in clays[J]. Géotechnique, 1993, 43(2):315-320.
[4] 王志,杜守继,张文波,等.浅埋铁路隧道下穿高速公路施工沉降分析[J].地下空间与工程学报, 2009, 5(3):531-535, 572. WANG Z, DU S J, ZHANG W B, et al. Analysis of construction settlement of shallow railway tunnel under crossing the highway[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(3):531-535, 572.(in Chinese)
[5] 张向东,苏伟林,张晋.隧道下穿高速公路路基沉降规律[J].辽宁工程技术大学学报(自然科学版), 2016, 35(8):831-835. ZHANG X D, SU W L, ZHANG J. Roadbed settlement of expressway caused by tunnel under-crossing excavation[J]. Journal of Liaoning Technical University (Natural Science), 2016, 35(8):831-835.(in Chinese)
[6] 朱正国,黄松,朱永全.铁路隧道下穿公路引起的路面沉降规律和控制基准研究[J].岩土力学, 2012, 33(2):558-563, 576. ZHU Z G, HUANG S, ZHU Y Q. Study of road surface settlement rule and controlled criterion for railway tunnel undercrossing highway[J]. Rock and Soil Mechanics, 2012, 33(2):558-563, 576.(in Chinese)
[7] 唐艳.铁路隧道下穿高速公路工程风险评估管理方法研究[J].现代隧道技术, 2022, 59(3):220-226. TANG Y. Research on risk assessment and management methods for projects of railway tunnels passing under expressways[J]. Modern Tunnelling Technology, 2022, 59(3):220-226.(in Chinese)
[8] 廖斯韬,李南南,郑卫强.输水隧洞下穿并行高速公路施工安全风险评价[J/OL].水力发电.(2023-07-12)[2023-10-29]. http://kns.cnki.net/kcms/detail/11.1845.TV.20230712. 1354.004. html. LIAO S T, LI N N, ZHENG W Q. Assessment on construction safety risk of water conveyance tunnels undercrossing and parallel to expressway[J/OL]. Water Power.(2023-07-12)[2023-10-29]. http://kns.cnki.net/kcms/detail/11.1845.TV.20230712. 1354.004.html.(in Chinese)
[9] 李明磊.大山头隧道下穿高速公路方案设计[J].铁道标准设计, 2012(S1):66-68. LI M L. Design of dashantou tunnel passing under highway[J]. Railway Standard Design, 2012(S1):66-68.(in Chinese)
[10] 龚彦峰,唐曌,李强,等.高速铁路隧道超浅埋下穿高速公路设计研究[J].铁道标准设计, 2016, 60(2):119-124. GONG Y F, TANG Z, LI Q, et al. Design research on super shallow-buried high-speed railway tunnel passing under highway[J]. Railway Standard Design, 2016, 60(2):119-124.(in Chinese)
[11] HOYAUX B, LADANYI B. Gravitational stress field around a tunnel in soft ground[J]. Canadian Geotechnical Journal, 1970, 7(1):54-61.
[12] SAGASETA C. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3):301-320.
[13] VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Géotechnique, 1998, 48(5):709-713.
[14] VERRUIJT A. A complex variable solution for a deforming circular tunnel in an elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(2):77-89.
[15] HISATAKE M, OHNO S. Effects of pipe roof supports and the excavation method on the displacements above a tunnel face[J]. Tunnelling and Underground Space Technology, 2008, 23(2):120-127.
[16] 李健,谭忠盛,喻渝,等.浅埋下穿高速公路黄土隧道管棚变形监测及受力机制分析[J].岩石力学与工程学报, 2011, 30(S1):3002-3008. LI J, TAN Z S, YU Y, et al. Analysis of deformation monitoring and mechanical behaviors of big pipe-roof for shallow-buried large-span tunnel to underpass highway[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1):3002-3008.(in Chinese)
[17] AKSOY C O, ONARGAN T. The role of umbrella arch and face bolt as deformation preventing support system in preventing building damages[J]. Tunnelling and Underground Space Technology, 2010, 25(5):553-559.
[18] 吕培林,周顺华.软土地区盾构隧道下穿铁路干线引起的线路沉降规律分析[J].中国铁道科学, 2007, 28(2):12-16. LV P L, ZHOU S H. Analysis on upper rail settlement in soft ground resulting from shield tunnelling across main railway line[J]. China Railway Science, 2007, 28(2):12-16.(in Chinese)
[19] 邹浩,陈金国.软土地区盾构下穿施工对铁路路基影响分析:以杭州地铁2号线某区间现场监测为例[J].隧道建设(中英文), 2018, 38(2):199-206. ZOU H, CHEN J G. Analysis of influence of shield tunneling in soft soil on upper railway subgrade:A case study of site monitoring of a section on Hangzhou Metro Line No. 2[J]. Tunnel Construction, 2018, 38(2):199-206.(in Chinese)
[20] TAYLOR R N. Ground movements associated with tunnels and trenches[D]. Cambridge:University of Cambridge, 1984.
[1] 王如宾, 王新越, 张文全, 徐卫亚, 陆进彬, 向天兵. 含交叉断层深埋隧洞围岩衬砌外水压力物理模型试验[J]. 清华大学学报(自然科学版), 2024, 64(7): 1179-1192.
[2] 王克忠, 李胜, 曹立, 张如九, 庞智勇, 王彦兵, 刘耀儒. 深埋隧洞岩爆主动防控作用机制与效果[J]. 清华大学学报(自然科学版), 2024, 64(7): 1157-1167.
[3] 王克忠, 谢添, 李梅, 张如九, 侯少康, 王震洲, 刘耀儒. 基于数值样本和随机森林分类器的岩爆风险快速预测代理模型[J]. 清华大学学报(自然科学版), 2024, 64(7): 1203-1214.
[4] 崔靖奇, 吴顺川, 程海勇, 王涛, 姜关照, 浦仕江, 任子健. 滇中引水软岩隧洞围岩位移时序预测[J]. 清华大学学报(自然科学版), 2024, 64(7): 1215-1225.
[5] 陈念, 张强, 汪小刚, 王玉杰, 王鹏, 王丹. 深埋隧洞地下水分层水力联系地表深孔监测技术与工程应用[J]. 清华大学学报(自然科学版), 2024, 64(7): 1226-1237.
[6] 刘康, 刘昭伟, 陈永灿, 马芳平, 王皓冉, 黄会宝, 谢辉. 引水隧洞结构安全风险评价的动态Bayes网络模型[J]. 清华大学学报(自然科学版), 2023, 63(7): 1041-1049.
[7] 陈永灿, 陈嘉杰, 王皓冉, 巩宇, 冯跃, 刘昭伟, 祁宁春, 刘梅, 李永龙, 谢辉. 大直径长引水隧洞水下检测机器人系统关键技术[J]. 清华大学学报(自然科学版), 2023, 63(7): 1015-1031.
[8] 刘晓丽, 孙欢, 董勤喜, 熊炎林, KUMAR Nawnit, 苏岩, 周建军. 深埋引水隧洞极硬岩TBM掘进及辅助破岩技术[J]. 清华大学学报(自然科学版), 2022, 62(8): 1292-1301.
[9] 侯少康, 刘耀儒. 双护盾TBM掘进数值仿真及护盾卡机控制因素影响分析[J]. 清华大学学报(自然科学版), 2021, 61(8): 809-817.
[10] 李邵军, 郑民总, 邱士利, 姚志宾, 肖亚勋, 周济芳, 潘鹏志. 中国锦屏地下实验室开挖隧洞灾变特征与长期原位力学响应分析[J]. 清华大学学报(自然科学版), 2021, 61(8): 842-852.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn