Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (7): 1278-1292    DOI: 10.16511/j.cnki.qhdxxb.2024.26.038
  论文 本期目录 | 过刊浏览 | 高级检索 |
基于深度机器视觉的香炉山隧洞钻孔多维特征精准定位
王旭1,2, 巩晓雯3, 黄其帅3, 陈炳瑞1,2, 杨世强4, 杨旭5, 张延杰6
1. 中国科学院武汉岩土力学研究所, 岩土力学与工程国家重点实验室, 武汉 430071;
2. 中国科学院大学, 北京 100049;
3. 云南省滇中引水二期工程有限公司, 昆明 650000;
4. 长江科学院, 武汉 430010;
5. 云南省曲靖市富源县水务局, 曲靖 655500;
6. 云南省滇中引水工程有限公司, 昆明 650000
Precise multi-dimensional features positioning of Xianglushan tunnel drilling based on deep-machine vision
WANG Xu1,2, GONG Xiaowen3, HUANG Qishuai3, CHEN Bingrui1,2, YANG Shiqiang4, YANG Xu5, ZHANG Yanjie6
1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Yunnan Dianzhong Water Diversion Phase II Engineering Co., Ltd., Kunming 650000, China;
4. Changjiang River Scientific Research Institute, Wuhan 430010, China;
5. Yunnan Qujing Fuyuan Administration of Water Resources, Qujing 655500, China;
6. Yunnan Dianzhong Water Diversion Engineering Co., Ltd., Kunming 650000, China
全文: PDF(32671 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 香炉山隧洞是滇中引水的控制性工程, 岩爆是其主要灾害源之一。 微震传感器坐标精确定位是岩爆微震监测预警的基础, 但是其钻孔位置仍需人工测量, 精度低且实时性差, 严重阻碍岩爆微震自动监测系统的发展。 该文提出一种基于深度机器视觉的隧洞钻孔多维特征精准定位方法YOLO(you only look once)-AT(anchor tracking)。 首先, 该方法利用改进YOLO V8模型YOLO V8 OBB(oriented bounding boxes)实现香炉山隧洞钻孔轮廓的精准拟合; 其次, 构建锚点追踪算法AT, 在轮廓椭圆上选定锚点, 并根据对极线约束和点序约束实现多视角下的锚点追踪; 最后, 利用视差法求解各锚点的空间坐标, 并基于解析几何理论求解香炉山隧洞钻孔的多维特征。 利用质量可控的香炉山隧洞合成钻孔轮廓数据库对各种钻孔定位方法进行验证, 结果表明: YOLO-AT方法具有良好的钻孔轮廓拟合精度和钻孔多维特征定位精度, 对钻孔口中心坐标、 钻孔直径、 钻孔口平面方向、 钻孔方向的定位误差中位数分别为0.835 mm、 0.795 mm、 0.567°、 1.751°, 且定位性能受钻孔轮廓质量的影响小, 满足香炉山隧洞岩爆微震自动监测的需求, 并有向各类地下工程钻孔测量工作推广的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王旭
巩晓雯
黄其帅
陈炳瑞
杨世强
杨旭
张延杰
关键词 深度学习机器视觉微震监测钻孔定位滇中引水工程    
Abstract:[Objective] Xianglushan tunnel is a key project of the Yunnan Dianzhong Water Diversion Engineering, and rock bursts are one of its main hazards. The precise positioning of microseismic sensor coordinates is the basis for microseismic monitoring and early warning systems for rock bursts, which is controlled by drilling coordinates and angles. However, the drilling location needs to be measured manually, which has low accuracy and poor timeliness, seriously hindering the development of automatic microseismic monitoring systems for rock bursts. Meanwhile, the precise positioning of multi-dimensional features is the key to realizing the full automation of drilling operations, including the coordinates, diameter, plane direction, and busbar direction of drilling. This study presents a method for the precise positioning of multi-dimensional features of tunnel drilling based on deep-machine vision called YOLO-AT. [Methods] The proposed method includes two modules: drilling contour detection and drilling multi-dimensional feature positioning. The drilling contour detection module adds rotation angle prediction to the YOLO V8 model, thereby constructing a YOLO V8 OBB model that can accurately fit the drilling contour. The drilling multi-dimensional feature positioning module establishes an anchor tracking algorithm, selects anchor points on contour ellipses, and achieves anchor tracking from multiple perspectives based on epipolar line constraints and projective invariance of anchor order. The spatial coordinates of each anchor point and multi-dimensional features were solved using the parallax method and analytical geometry theory, respectively. [Results] To verify the robustness of the proposed method to contour quality, a synthetic drilling contour database with controllable quality was established for Xianglushan tunnel, and the positioning results were compared with those of the ALSR, FED, AAMED, YOLO V8, and DLT methods. Results showed that: (1) concerning contour detection accuracy, the proposed method exhibited the best performance among other methods, with the average intersection over union (IoU) ratio, average F1 score, precision, and recall at an IoU threshold corresponding to 0.9 of 0.957, 0.948, 0.977, and 0.977, respectively. (2) Concerning contour detection stability, the proposed method was less affected by contour quality and always maintained high accuracy. By contrast, YOLO V8 had less fluctuation and low indicators, whereas other methods had poor stability and high accuracy under good contour quality. (3) Concerning the accuracy of multi-dimensional feature positioning, the median errors of the proposed method for the coordinate, diameter, plane direction, and busbar direction of drilling were 0.835 mm, 0.795 mm, 0.567°, and 1.751°, respectively, which were the best among all methods. (4) Concerning the stability of multi-dimensional feature positioning, the proposed method and YOLO V8-AT had better stability. Conversely, the stability of other methods rapidly decreased as the quality of the drilling contour deteriorated. [Conclusions] The proposed YOLO-AT method can achieve accurate and stable positioning of multi-dimensional features in Xianglushan tunnel drilling, with a performance superior to that of existing methods, thereby having the potential to be extended to various underground engineering drilling positions. Next, the research intends to focus on combining the proposed method and laser ranging technology to measure hole depth and eliminate ambiguity in drilling direction, in addition to analyzing the roles of RANSAC and reprojection methods in improving algorithm accuracy and stability.
Key wordsdeep learning    machine vision    microseismic monitoring    drilling positioning    Dianzhong water diversion engineering
收稿日期: 2024-01-22      出版日期: 2024-06-25
基金资助:国家自然科学基金面上项目(42077263); 云南省重大科技专项计划项目(202102AF08001)
通讯作者: 陈炳瑞, 研究员, E-mail:brchen823@163.com     E-mail: brchen823@163.com
引用本文:   
王旭, 巩晓雯, 黄其帅, 陈炳瑞, 杨世强, 杨旭, 张延杰. 基于深度机器视觉的香炉山隧洞钻孔多维特征精准定位[J]. 清华大学学报(自然科学版), 2024, 64(7): 1278-1292.
WANG Xu, GONG Xiaowen, HUANG Qishuai, CHEN Bingrui, YANG Shiqiang, YANG Xu, ZHANG Yanjie. Precise multi-dimensional features positioning of Xianglushan tunnel drilling based on deep-machine vision. Journal of Tsinghua University(Science and Technology), 2024, 64(7): 1278-1292.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.26.038  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I7/1278
[1] 欧阳林,张如九,刘耀儒,等.深埋隧洞岩爆防控技术及典型工程应用现状综述[J].长江科学院院报, 2022, 39(12):161-170. OUYANG L, ZHANG R J, LIU Y R, et al. Review on rockburst prevention techniques and typical applications in deep tunnels[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(12):161-170.(in Chinese)
[2] 陈炳瑞,冯夏庭,符启卿,等.综合集成高精度智能微震监测技术及其在深部岩石工程中的应用[J].岩土力学, 2020, 41(7):2422-2431. CHEN B R, FENG X T, FU Q Q, et al. Integration and high precision intelligence microseismic monitoring technology and its application in deep rock engineering[J]. Rock and Soil Mechanics, 2020, 41(7):2422-2431.(in Chinese)
[3] CHEN B R, WANG X, ZHU X H, et al. Real-time arrival picking of rock microfracture signals based on convolutional-recurrent neural network and its engineering application[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(3):761-777.
[4] 张楚旋,李夕兵,董陇军,等.微震监测传感器布设方案评价模型及应用[J].东北大学学报(自然科学版), 2016, 37(4):594-598, 608. ZHANG C X, LI X B, DONG L J, et al. Evaluation model of microseismic monitoring sensor layout scheme and its application[J]. Journal of Northeastern University (Science and Technology), 2016, 37(4):594-598, 608.(in Chinese)
[5] 衡献伟,李青松,韩真理,等.微震监测系统传感器安装技术及应用[J].煤炭技术, 2015, 34(12):213-214. HENG X W, LI Q S, HAN Z L, et al. Mounting technology and application of microseismic monitoring system sensor[J]. Coal Technology, 2015, 34(12):213-214.(in Chinese)
[6] 李涛.不良条件下微震源定位及工程应用研究[D].北京:中国科学院大学, 2022. LI T. Research on micro seismic source location and engineering application under adverse conditions[D]. Beijing:University of Chinese Academy of Sciences, 2022.(in Chinese)
[7] 杨向东,芮晓飞,谢颖.基于高效Hough变换的圆柱特征检测方法[J].清华大学学报(自然科学版), 2015, 55(8):921-926. YANG X D, RUI X F, XIE Y. Efficient Hough transform-based cylinder feature detection algorithm[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(8):921-926.(in Chinese)
[8] MEI B, ZHU W D, YAN G R, et al. A new elliptic contour extraction method for reference hole detection in robotic drilling[J]. Pattern Analysis and Applications, 2015, 18(3):695-712.
[9] PRASAD D K, LEUNG M K H, CHO S Y. Edge curvature and convexity based ellipse detection method[J]. Pattern Recognition, 2012, 45(9):3204-3221.
[10] 贾棋,梁景朝,王祎,等.基于区域检测和弧筛选的椭圆检测方法[J].计算机辅助设计与图形学学报, 2022, 34(11):1784-1794. JIA Q, LIANG J C, WANG Y, et al. Ellipse detection combining region detection and arc filtering[J]. Journal of Computer-Aided Design&Computer Graphics, 2022, 34(11):1784-1794.(in Chinese)
[11] 范安然.基于双目立体视觉的道岔钢轨钻孔的尺寸测量[D].秦皇岛:燕山大学, 2015. FAN A R. Size measurement of the switch rail drilling based on binocular stereo vision[D]. Qinhuangdao:Yanshan University, 2015.(in Chinese)
[12] 胡彦强,马钺,许敏.白车身孔槽类特征三维坐标在线测量方法研究[J].计算机工程, 2017, 43(10):186-191, 197. HU Y Q, MA Y, XU M. Study of on-line measurement method for 3D coordinates of body-in-white hole slot features[J]. Computer Engineering, 2017, 43(10):186-191, 197.(in Chinese)
[13] LEI M Y, ZHANG X H, DONG Z, et al. Locating anchor drilling holes based on binocular vision in coal mine roadways[J]. Mathematics, 2023, 11(20):4365.
[14] 黄金.基于双目视觉的机械臂锚护孔位精准定位技术研究[D].太原:太原科技大学, 2022. HUANG J. Research on recise positioning technology of manipulator anchor hole based on binocular vision[D].Taiyuan:Taiyuan University of Science and Technology, 2022.(in Chinese)
[15] 魏振忠,张广军.视觉检测中椭圆中心成像畸变误差模型研究[J].北京航空航天大学学报, 2003, 29(2):140-143. WEI Z Z, ZHANG G J. Distortion error model of image of ellipse center in 3D visual inspection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(2):140-143.(in Chinese)
[16] 王琳毅,白静,李文静,等. YOLO系列目标检测算法研究进展[J].计算机工程与应用, 2023, 59(14):15-29. WANG L Y, BAI J, LI W J, et al. Research progress of YOLO series target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(14):15-29.(in Chinese)
[17] 方涛涛,王池社,王洁,等.基于YOLO v8n的探地雷达图像管线定位方法[J].国外电子测量技术, 2023, 42(11):170-177. FANG T T, WANG C S, WANG J, et al. Ground penetrating radar image pipeline location based on YOLO v8n[J]. Foreign Electronic Measurement Technology, 2023, 42(11):170-177.(in Chinese)
[18] 宋怀波,焦义涛,华志新,等.基于YOLO v5-OBB与CT的浸种玉米胚乳裂纹检测[J].农业机械学报, 2023, 54(3):394-401, 439. SONG H B, JIAO Y T, HUA Z X, et al. Endosperm crack detection method for seed dipping maize based on YOLO v5-OBB and CT technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3):394-401, 439.(in Chinese)
[19] 蒋弘毅,王永娟,康锦煜.目标检测模型及其优化方法综述[J].自动化学报, 2021, 47(6):1232-1255. JIANG H Y, WANG Y J, KANG J Y. A survey of object detection models and its optimization methods[J]. Acta Automatica Sinica, 2021, 47(6):1232-1255.(in Chinese)
[20] HOU L P, LU K, YANG X, et al. G-Rep:Gaussian representation for arbitrary-oriented object detection[J]. Remote Sensing, 2023, 15(3):757.
[21] MURRUGARRA-LLERENA J, KIRSTEN L N, ZENI L F, et al. Probabilistic intersection-over-union for training and evaluation of oriented object detectors[J]. IEEE Transactions on Image Processing, 2024, 33:671-681.
[22] NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]//Proceedings of the 18th International Conference on Pattern Recognition (ICPR 2006). Hong Kong, China:IEEE, 2006:850-855.
[23] MILLER J R, GOLDMAN R N. Using tangent balls to find plane sections of natural quadrics[J]. IEEE Computer Graphics and Applications, 1992, 12(2):68-82.
[24] LU C S, XIA S Y, SHAO M, et al. Arc-support line segments revisited:An efficient high-quality ellipse detection[J]. IEEE Transactions on Image Processing, 2020, 29:768-781.
[25] JIA Q, FAN X, LUO Z X, et al. A fast ellipse detector using projective invariant pruning[J]. IEEE Transactions on Image Processing, 2017, 26(8):3665-3679.
[26] MENG C, LI Z X, BAI X Z, et al. Arc adjacency matrix-based fast ellipse detection[J]. IEEE Transactions on Image Processing, 2020, 29:4406-4420.
[27] 王斌,吴丹,盖宇航.面向机器人精密装配的高精度圆片位姿视觉检测[J].机械工程学报, 2023, 59(8):50-59. WANG B, WU D, GAI Y H. High-precision wafer pose visual detection for robot precise assembly[J]. Journal of Mechanical Engineering, 2023, 59(8):50-59.(in Chinese)
[28] WU W Q, WANG X G, XU D, et al. Position and orientation measurement for autonomous aerial refueling based on monocular vision[J]. International Journal of Robotics and Automation, 2017, 32(1):13-21.
[29] 赵祚喜,冯荣,朱裕昌,等.空间点的多视图DLT三维定位[J].光学精密工程, 2020, 28(1):212-222. ZHAO Z X, FENG R, ZHU Y C, et al. Multi-view DLT three-dimensional positioning method for spatial points[J]. Optics and Precision Engineering, 2020, 28(1):212-222.(in Chinese)
[1] 吴金, 吴顺川, 王焘, 席雅允. 基于深度学习的复杂地层钻孔图像岩体结构面识别方法[J]. 清华大学学报(自然科学版), 2024, 64(7): 1136-1146.
[2] 罗振敏, 张利冬, 宋泽阳. 基于全连接的长短期记忆网络实现采空区CO多步预测[J]. 清华大学学报(自然科学版), 2024, 64(6): 940-952.
[3] 洪瑶, 史聪灵, 李俊毅, 李佳. 隧道火灾中物理场与关键控制参数间的快速双向预测[J]. 清华大学学报(自然科学版), 2024, 64(6): 1024-1031.
[4] 黄贲, 康飞, 唐玉. 基于目标检测的混凝土坝裂缝实时检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1078-1086.
[5] 苗旭鹏, 张敏旭, 邵蓥侠, 崔斌. PS-Hybrid: 面向大规模推荐模型训练的混合通信框架[J]. 清华大学学报(自然科学版), 2022, 62(9): 1417-1425.
[6] 梅杰, 李庆斌, 陈文夫, 邬昆, 谭尧升, 刘春风, 王东民, 胡昱. 基于目标检测模型的混凝土坯层覆盖间歇时间超时预警[J]. 清华大学学报(自然科学版), 2021, 61(7): 688-693.
[7] 管志斌, 王晓萌, 辛伟, 王嘉捷. 源代码缺陷检测数据生成及标注方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1240-1245.
[8] 韩坤, 潘海为, 张伟, 边晓菲, 陈春伶, 何舒宁. 基于多模态医学图像的Alzheimer病分类方法[J]. 清华大学学报(自然科学版), 2020, 60(8): 664-671,682.
[9] 王志国, 章毓晋. 监控视频异常检测:综述[J]. 清华大学学报(自然科学版), 2020, 60(6): 518-529.
[10] 蒋文斌, 王宏斌, 刘湃, 陈雨浩. 基于AVX2指令集的深度学习混合运算策略[J]. 清华大学学报(自然科学版), 2020, 60(5): 408-414.
[11] 余传明, 原赛, 胡莎莎, 安璐. 基于深度学习的多语言跨领域主题对齐模型[J]. 清华大学学报(自然科学版), 2020, 60(5): 430-439.
[12] 宋欣瑞, 张宪琦, 张展, 陈新昊, 刘宏伟. 多传感器数据融合的复杂人体活动识别[J]. 清华大学学报(自然科学版), 2020, 60(10): 814-821.
[13] 张思聪, 谢晓尧, 徐洋. 基于dCNN的入侵检测方法[J]. 清华大学学报(自然科学版), 2019, 59(1): 44-52.
[14] 赵磊, 张文, 孙振国, 陈强. 基于色彩分割及信息熵加权特征匹配的刹车片图像分类算法[J]. 清华大学学报(自然科学版), 2018, 58(6): 547-552.
[15] 汤志立, 刘晓丽, 李超毅, 秦鹏翔, 徐千军. 深埋TBM隧道施工微震监测规律[J]. 清华大学学报(自然科学版), 2018, 58(5): 461-468.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn