Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (4): 712-723    DOI: 10.16511/j.cnki.qhdxxb.2024.27.004
  信息科学与技术 本期目录 | 过刊浏览 | 高级检索 |
基于可训练对偶标架的模型驱动并行压缩感知磁共振成像算法及其收敛性分析
石保顺1,2, 刘政1,2, 刘柯讯1,2
1. 燕山大学 信息科学与工程学院, 秦皇岛 066004;
2. 燕山大学 河北省信息传输与信号处理重点实验室, 秦皇岛 066004
Model-driven parallel compressive sensing magnetic resonance imaging algorithm based on trainable dual frames and its convergence analysis
SHI Baoshun1,2, LIU Zheng1,2, LIU Kexun1,2
1. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
2. Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao 066004, China
全文: PDF(6893 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 并行压缩感知磁共振成像(parallel compressive sensing magnetic resonance imaging, p-CSMRI)算法旨在利用多线圈采样的部分k域数据重建原始图像。 近些年基于学习的模型驱动p-CSMRI算法以较高的重建质量受到了广泛的关注, 然而其先验网络架构通常基于经验设计, 缺乏模型可解释性, 导致算法收敛性难以分析。 因此, 该文构建了可证明有界的深度去噪器, 并将其作为先验模块融合到模型驱动的p-CSMRI网络中, 提出了收敛性可分析的深度展开p-CSMRI算法。 首先基于对偶标架结合设计的深度阈值网络, 构建了满足有界条件的深度去噪器; 其次构建了基于对偶标架的p-CSMRI优化模型, 并将对应的迭代步骤展开成了一个可端到端有监督训练的深度神经网络; 最后利用可证明有界的先验模块提出了可分析收敛性的算法框架。 仿真实验表明, 在4倍加速因子下, 通过所提算法重建图像的峰值信噪比相较Modl、 VN和VS-Net算法分别提高了1.70、 1.45和0.46 dB。 该文从理论层面证明了构建的深度去噪器满足有界条件, 并分析了所提算法的收敛性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石保顺
刘政
刘柯讯
关键词 压缩感知磁共振成像并行成像对偶标架收敛性分析深度展开网络    
Abstract:[Objective] Parallel compressive sensing magnetic resonance imaging (p-CSMRI) algorithms aim to improve and refine the reconstructed image using partial k-space data sampled from multiple coils. Recently, learning-based model-driven p-CSMRI algorithms have attracted extensive attention because of their superior reconstruction quality. Nevertheless, their prior network architectures are typically designed empirically, lacking model interpretability and hampering the analysis of algorithm convergence. To address this problem, we introduce a provably bounded denoiser based on deep learning and incorporate it as a prior module into a model-driven p-CSMRI network. Moreover, we propose a deep unrolled p-CSMRI algorithm; its convergence can be explicitly analyzed. [Methods] First, to improve the sparse representation capability and learning speed of traditional tight frames, we extend the single tight frame to a dual-frame network. Because the image pixels vary in the spatial domain, a deep threshold network is developed to adaptively extract thresholds from the input images, thereby improving the generalization ability of the dual frames. Based on the dual frames integrated with the elaborated deep threshold network, we introduce a novel provably bounded deep denoiser. Second, we describe a p-CSMRI optimization model based on dual frames. The constructed optimization model is iteratively solved via the half-quadratic splitting solver, and the corresponding iterations are unfolded into a deep neural network that can be trained by end-to-end supervised learning. Finally, under reducing noise level conditions, the convergence of model-driven p-CSMRI algorithms is explicitly proved based on the bounded denoiser theory. The convergence theory of plug-and-play (PnP) imaging methods demonstrates that methods with decreasing noise levels can realize a fixed-point convergence under the assumption of a bounded denoiser. We explicitly prove that the proposed deep denoiser as the prior network is bounded. Based on this bounded property, we develop a model-driven p-CSMRI algorithmic framework with guaranteed convergence. [Results] Theoretically, we explicitly prove that the built deep denoiser as the prior network satisfies the bounded property and perform a convergence analysis of the proposed algorithm under the mild condition of gradually decreasing noise. Simulation experiments carried out on the knee MRI dataset from New York University disclose that, compared with the Modl, VN, and VS-Net algorithms, the proposed method realizes improvements of 1.70, 1.45, and 0.46 dB, respectively, in peak signal-to-noise ratio for reconstructed images under a fourfold acceleration factor. However, a comparative assessment of the proposed model with Modl, VN, and VS-Net algorithms concerning parameter memory and average inference time reveals that the model-driven p-CSMRI method based on the dual frames recommended in this study has a high number of parameters. Furthermore, the image inference time of the proposed method is lower than those of Modl and VN and slightly higher than that of VS-Net. Therefore, our proposed method shows a moderate level of computational complexity. [Conclusions] The model-driven p-CSMRI network algorithm proposed here, based on trainable dual frames, has a theoretical convergence guarantee and demonstrates stable performance in experiments. Moreover, our algorithm proved effective in reconstructing high-quality MR images. This work offers valuable insights into future research and development in the area of magnetic resonance imaging.
Key wordscompressive sensing magnetic resonance imaging    parallel imaging    dual frames    convergence analysis    deep unrolled network
收稿日期: 2023-10-12      出版日期: 2024-03-27
基金资助:国家自然科学基金面上项目(62371414); 国家自然科学基金青年科学基金项目(61901406); 河北省自然科学基金面上项目(F2023203043); 河北省自然科学基金青年科学基金项目(F2020203025); 河北省青年拔尖人才项目(BJ2021044); 河北省重点实验室项目(202250701010046)
作者简介: 石保顺(1989-),男,副教授。E-mail:shibaoshun@ysu.edu.cn
引用本文:   
石保顺, 刘政, 刘柯讯. 基于可训练对偶标架的模型驱动并行压缩感知磁共振成像算法及其收敛性分析[J]. 清华大学学报(自然科学版), 2024, 64(4): 712-723.
SHI Baoshun, LIU Zheng, LIU Kexun. Model-driven parallel compressive sensing magnetic resonance imaging algorithm based on trainable dual frames and its convergence analysis. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 712-723.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.27.004  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I4/712
  
  
  
  
  
[1] LIANG D, LIU B, WANG J, et al. Accelerating SENSE using compressed sensing[J]. Magnetic Resonance in Medicine, 2009, 62(6): 1574-1584.
[2] CHEN C, LI Y Q, HUANG J Z. Calibrationless parallel MRI with joint total variation regularization[C]//Proceedings of the 16th International Conference on Medical Image Computing and Computer-Assisted Intervention. Nagoya, Japan: Springer, 2013: 106-114.
[3] CHAÂRI L, PESQUET J C, BENAZZA-BENYAHIA A, et al. A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging[J]. Medical Image Analysis, 2011, 15(2): 185-201.
[4] BLOCK K T, UECKER M, FRAHM J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint[J]. Magnetic Resonance in Medicine, 2007, 57(6): 1086-1098.
[5] WELLER D. Reconstruction with dictionary learning for accelerated parallel magnetic resonance imaging[C]//Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation. Santa Fe, NM, USA: IEEE, 2016: 105-108.
[6] LUSTIG M, ALLEY M, VASANAWALA S, et al. Fast L1-SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime[J]. IEEE Transactions on Medical Imaging. 2012, 31(6): 1250-1262.
[7] HALDAR J P, ZHUO J W. P-LORAKS: Low-rank modeling of local k-space neighborhoods with parallel imaging data[J]. Magnetic Resonance in Medicine, 2016, 75(4): 1499-1514.
[8] KIM T H, SETSOMPOP K, HALDAR J P. LORAKS makes better SENSE: Phase-constrained partial fourier SENSE reconstruction without phase calibration[J]. Magnetic Resonance in Medicine, 2017, 77(3): 1021-1035.
[9] ZHANG X L, GUO D, HUANG Y M, et al. Image reconstruction with low-rankness and self-consistency of k-space data in parallel MRI[J]. Medical Image Analysis, 2020, 63: 101687.
[10] 王尧. 基于深度学习的脑部多模态核磁共振影像研究[D]. 长春: 吉林大学, 2022. WANG Y. Multi-modality brain magnetic resonance images recognition with deep learning[D]. Changchun: Jilin University, 2022. (in Chinese)
[11] 施伟成, 金朝阳, 叶铮. 基于PCAU-Net的快速多通道磁共振成像方法[J]. 波谱学杂志, 2023, 40(1): 39-51. SHI W C, JIN Z Y, YE Z. Fast multi-channel magnetic resonance imaging based on PCAU-Net[J]. Chinese Journal of Magnetic Resonance, 2023, 40(1): 39-51. (in Chinese)
[12] WANG S S, SU Z H, YING L, et al. Accelerating magnetic resonance imaging via deep learning[C]//Proceedings of the IEEE 13th International Symposium on Biomedical Imaging. Prague, Czech Republic: IEEE, 2016: 514-517.
[13] AGGARWAL H K, MANI M P, JACOB M. MoDL: Model-based deep learning architecture for inverse problems[J]. IEEE Transactions on Medical Imaging, 2019, 38(2): 394-405.
[14] DUAN J M, SCHLEMPER J, QIN C, et al. VS-Net: Variable splitting network for accelerated parallel MRI reconstruction[C]//Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention. Shenzhen, China: Springer, 2019: 713-722.
[15] HAMMERNIK K, KLATZER T, KOBLER E, et al. Learning a variational network for reconstruction of accelerated MRI data[J]. Magnetic Resonance in Medicine, 2018, 79(6): 3055-3071.
[16] MENG N, YANG Y, XU Z B, et al. A prior learning network for joint image and sensitivity estimation in parallel MR imaging[C]//Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention. Shenzhen, China: Springer, 2019: 732-740.
[17] WANG S S, WU R Y, LI C, et al. PARCEL: Physics-based unsupervised contrastive representation learning for multi-coil MR imaging[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20(5): 2659-2670.
[18] YANG Y, WANG N, YANG H R, et al. Model-driven deep attention network for ultra-fast compressive sensing MRI guided by cross-contrast MR image[C]//Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention. Lima, Peru: Springer, 2020: 188-198.
[19] CHAN S H, WANG X R, ELGENDY O A. Plug-and-play ADMM for image restoration: Fixed-point convergence and applications[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 84-98.
[20] TERRIS M, REPETTI A, PESQUET J C, et al. Enhanced convergent PnP algorithms for image restoration[C]//Proceedings of the International Conference on Image Processing. Anchorage, AK, USA: IEEE, 2021: 1684-1688.
[21] YUAN X, LIU Y, SUO J L, et al. Plug-and-play algorithms for large-scale snapshot compressive imaging[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 1444-1454.
[22] CAI J F, JI H, SHEN Z W, et al. Data-driven tight frame construction and image denoising[J]. Applied and Computational Harmonic Analysis, 2014, 37(1): 89-105.
[23] CAI J F, CHOI J K, WEI K. Data driven tight frame for compressed sensing MRI reconstruction via off-the-grid regularization[J]. SIAM Journal on Imaging Sciences, 2020, 13(3): 1272-1301.
[24] SHI B S, WANG Y X, LI D. Provable general bounded denoisers for snapshot compressive imaging with convergence guarantee[J]. IEEE Transactions on Computational Imaging, 2023, 9: 55-69.
[25] ISOGAWA K, IDA T, SHIODERA T, et al. Deep shrinkage convolutional neural network for adaptive noise reduction[J]. IEEE Signal Processing Letters, 2018, 25(2): 224-228.
[26] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 7132-7141.
[27] UECKER M, LAI P, MURPHY M J, et al. ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA[J]. Magnetic Resonance in Medicine, 2014, 71(3): 990-1001.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn