Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (5): 841-851    DOI: 10.16511/j.cnki.qhdxxb.2024.27.007
  动力与能源 本期目录 | 过刊浏览 | 高级检索 |
多温度限制点条件下燃油热管理系统热回油特性分析
杨世宇, 林远方, 于海育, 徐向华, 梁新刚
清华大学 航天航空学院, 热科学与动力工程教育部重点实验室, 北京 100084
Analysis of the hot fuel return characteristics for a fuel thermal management system with multiple temperature limit points
YANG Shiyu, LIN Yuanfang, YU Haiyu, XU Xianghua, LIANG Xingang
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(6150 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 热回油是提高飞行器燃油热管理系统性能的重要途径。为研究多温度限制点条件下燃油热管理系统的热回油特性, 该文基于Python语言自主开发了燃油热管理系统稳态仿真模型, 并进行了实验验证。首先分析了热回油流量对各温度限制点温度的影响规律, 结果表明热回油流量的增加并不一定使得全部温度限制点的温度均下降, 甚至导致了供油箱出口温度和热回油阀出口温度的升高, 这说明过大或过小的热回油流量均可能引发燃油热管理系统的失效, 热回油流量存在满足温度限制要求的变化区间。对于飞机热载荷加热器出口温度和燃油喷嘴出口温度, 存在热回油临界流量, 当热回油流量达到临界值时, 进一步增加热回油会提升系统超温的风险。随后探究了热回油作用下系统的飞机热载荷极限, 发现飞机热载荷极限对应于热回油流量限制区间的大小突变为0的临界状态, 且此时限制区间的下界是系统的热回油临界流量。进一步研究发现, 当飞机热载荷加热器出口温度和燃油喷嘴出口温度在极限状态下同时达到各自的限制值时, 系统达到正常工作时的总热载荷极限。为了充分利用系统的总热载荷极限, 该文提出了可以实现系统热载荷之间相互传递的中间回路并给出了潜在方案, 为飞发一体化热管理提供了一种优化途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 热管理系统温度限制热回油热载荷极限数值模拟燃油    
Abstract:[Objective] With the rapid increase in aircraft thermal loads and the flight Mach number, combustion fuel and ram air can no longer effectively cool the fuel thermal management system (FTMS). Recently, hot fuel return has become an important way to enhance the cooling capacity of the FTMS, and the regulation of the hot fuel return flow has garnered significant attention. However, the impact of the hot fuel return flow on the limited temperatures still requires systematic research, and the thermal load limits of the FTMS have not been explored. Therefore, in this study, the hot fuel return characteristics of the FTMS with multiple temperature limit points were investigated to improve system performance. Considering the scalability of the models, a steady-state simulation model for the FTMS was developed using Python based on the thermal fluid network method and solved using the damped Newton method to guarantee the convergence of the flow and heat transfer iterations. In addition, the program was verified via experiments to guarantee its accuracy. A complete FTMS flow path was designed, and a standard condition was set for subsequent calculations. First, the temperature variations of the temperature limit points with the hot fuel return flow were calculated under the standard condition. Subsequently, by increasing the airborne thermal load under the standard condition, the maximum airborne thermal load that the system can withstand under the action of the hot fuel return (airborne thermal load limit) was investigated, and the occurrence condition of the limit state was analyzed. Lastly, the maximum total thermal load for normal operations (total thermal load limit) was explored under the standard condition, and the condition for reaching the total thermal load limit was discussed by changing the aeroengine thermal load. The increase of the hot fuel return flow may not decrease all the limited temperatures, even inducing the outlet temperature rises of the fuel tank and the hot fuel return valve. Excessive or insufficient hot fuel return flow may result in the overtemperature of the FTMS, and there exists a change interval for it to meet the multiple temperature limitations. For the outlet temperatures of the airborne thermal load heater and the fuel nozzle, there exists a critical flow of the hot fuel return, which indicates that the two outlet temperatures will not change once the hot fuel return flow reaches the critical flow. Combined with the outlet temperature rises of the fuel tank and the hot fuel return valve, when the hot fuel return flow surpasses its critical value, further increasing the hot fuel return flow will only increase the risk of system overtemperature. Moreover, the FTMS exhibits similar hot fuel return characteristics under different airborne thermal loads, and the critical flow of the hot fuel return rises with increasing airborne thermal load. However, as the critical flow of the hot fuel return rises slower than the lower boundary of the limited interval for the hot fuel return flow with the increased airborne thermal load, the airborne thermal load limit corresponds to the critical state when the size of the limited interval for the hot fuel return flow mutates into zero, and the lower boundary of the limited interval of the hot fuel return flow is just the system critical flow of the hot fuel return in this condition. Furthermore, the calculation results reveal that when the outlet temperatures of the airborne thermal load heater and the fuel nozzle reach their respective limit values in the limit state, the total thermal load limit can be achieved. In addition, to fully utilize the total thermal load limit of the FTMS under the action of an unreasonable aeroengine thermal load, the intermediate loop in this paper can be used to achieve the mutual transfer of the system thermal loads by the heat exchangers and refrigerating devices. As long as the total thermal load does not exceed the total thermal load limit, the FTMS can ensure that the system works normally through the intermediate loop to adjust the new aeroengine thermal load transferred into the fuel. This study explains the temperature variation regularity of multiple temperature limit points and the thermal load limits under the effect of the hot fuel return, providing a reference for the design of the thermal load distribution and the regulation strategy of the hot fuel return flow.
Key wordsthermal management system    temperature limitation    hot fuel return    thermal load limit    numerical simulation    fuel
收稿日期: 2023-09-19      出版日期: 2024-04-22
基金资助:国家科技重大专项(2019-III-0001-0044)
通讯作者: 梁新刚,教授,E-mail:liangxg@tsinghua.edu.cn     E-mail: liangxg@tsinghua.edu.cn
引用本文:   
杨世宇, 林远方, 于海育, 徐向华, 梁新刚. 多温度限制点条件下燃油热管理系统热回油特性分析[J]. 清华大学学报(自然科学版), 2024, 64(5): 841-851.
YANG Shiyu, LIN Yuanfang, YU Haiyu, XU Xianghua, LIANG Xingang. Analysis of the hot fuel return characteristics for a fuel thermal management system with multiple temperature limit points. Journal of Tsinghua University(Science and Technology), 2024, 64(5): 841-851.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.27.007  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I5/841
[1]VAN HEERDEN A S J, JUDT D M, JAFARI S, et al. Aircraft thermal management:practices, technology, system architectures, future challenges, and opportunities[J]. Progress in Aerospace Sciences, 2022, 128:100767.
[2]赵甜, 贺克伦, 陈群. 飞行器热管理系统的热量流建模及优化[J]. 工程热物理学报, 2021, 42(9):2448-2454. ZHAO T, HE K L, CHEN Q. Heat current modeling and optimization of aircraft thermal management systems[J]. Journal of Engineering Thermophysics, 2021, 42(9):2448-2454. (in Chinese)
[3]唐玫, 吉洪湖, 胡娅萍. 超声速飞行器综合热管理系统优化设计[J]. 推进技术, 2022, 43(1):50-60. TANG M, JI H H, HU Y P. Optimal design of comprehensive thermal management system for supersonic vehicle[J]. Journal of Propulsion Technology, 2022, 43(1):50-60. (in Chinese)
[4]QIN J, ZHANG S L, BAO W, et al. Thermal management method of fuel in advanced aeroengines[J]. Energy, 2013, 49:459-468.
[5]GERMAN B J. Tank heating model for aircraft fuel thermal systems with recirculation[J]. Journal of Propulsion and Power, 2012, 28(1):204-210.
[6]DOMAN D B. Fuel flow control for extending aircraft thermal endurance part I:underlying principles[C]//AIAA Guidance, Navigation, and Control Conference. San Diego, CA:AIAA, 2016:1621.
[7]HUANG G P, DOMAN D B, OPPENHEIMER M W, et al. Topology optimization of a fuel thermal management system[C]//AIAA Aviation 2019 Forum. Dallas, TX:AIAA, 2019:3471.
[8]DOMAN D B. Fuel flow topology and control for extending aircraft thermal endurance[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(1):35-50.
[9]WANG B, GONG X L, ZHANG Z D, et al. Modelling and understanding deposit formation of hydrocarbon fuels from the coke characteristics[J]. Fuel, 2022, 319:123745.
[10]SIGTHORSSON D, OPPENHEIMER M W, DOMAN D B. Flight endurance enhancement via thermal management system control subject to multiple limitations[C]//AIAA Scitech 2020 Forum. Orlando, FL:AIAA, 2020:1825.
[11]HUANG P G, DOMAN D B. Thermal management of single- and dual-tank fuel-flow topologies using an optimal control strategy[J]. Journal of Thermal Science and Engineering Applications, 2018, 10(4):041019.
[12]DOMAN D B. Fuel flow control for extending aircraft thermal endurance part II:Closed loop control[C]//AIAA Guidance, Navigation, and Control Conference. San Diego, CA:AIAA, 2016:1622.
[13]SIGTHORSSON D, OPPENHEIMER M W, DOMAN D B. N-tank thermal management system framework for thermal endurance enhancement[C]//AIAA SCITECH 2022 Forum. San Diego, CA:AIAA, 2022:0750.
[14]HUANG G P, DOMAN D B, ROTHENBERGER M J, et al. Dimensional analysis, modeling, and experimental validation of an aircraft fuel thermal management system[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(4):983-993.
[15]李波, 张东辉, 洪黎. 航空发动机燃油热管理系统仿真及试验验证[J]. 燃气涡轮试验与研究, 2019, 32(5):29-34.LI B, ZHANG D H, HONG L. Simulation and experimental verification of aero-engine fuel thermal management system[J]. Gas Turbine Experiment and Research, 2019, 32(5):29-34. (in Chinese)
[16]于磊, 梁兴壮, 李国强. 飞机热管理系统动态仿真[J]. 飞机设计, 2021, 41(3):9-13.YU L, LIANG X Z, LI G Q. Dynamic simulation of aircraft thermal management system[J]. Aircraft Design, 2021, 41(3):9-13. (in Chinese)
[17]康思昭, 奚修智, 李波, 等. 基于Flowmaster的航空发动机燃油系统温度仿真及分析[J]. 航空动力学报, 2020, 35(4):722-731.KANG S Z, XI X Z, LI B, et al. Simulation and analysis of temperature of aviation engine fuel system based on Flowmaster software[J]. Journal of Aerospace Power, 2020, 35(4):722-731. (in Chinese)
[18]LIU Y, LIN G P, GUO J H, et al. Dynamic prediction of fuel temperature in aircraft fuel tanks based on surrogate[J]. Applied Thermal Engineering, 2022, 215:118926.
[19]SIGTHORSSON D, OPPENHEIMER M W, DOMAN D B. Aircraft thermal endurance optimization (part I):Using a mixed dual tank topology and robust temperature regulation[C]//AIAA Scitech 2019 Forum. San Diego, CA:AIAA, 2019:1662.
[20]《离心泵设计基础》编写组. 离心泵设计基础[M]. 北京:机械工业出版社, 1974.〈Centrifugal pump design basis〉 writing group. Centrifugal pump design basis[M]. Beijing:China Machine Press, 1974. (in Chinese)
[21]樊思齐, 李华聪, 樊丁. 航空发动机控制[M]. 上册. 西安:西北工业大学出版社, 2008.FAN S Q, LI H C, FAN D. Aeroengine control[M]. Part I. Xi'an:Northwestern Polytechnical University Press, 2008. (in Chinese)
[22]MILLER D S. Internal flow systems:design and performance prediction[M]. 2nd ed. Houston:BHRA, 1990.
[23]沈维道, 童钧耕. 工程热力学[M]. 5版. 北京:高等教育出版社, 2016.SHEN W D, TONG J G. Engineering thermodynamics[M]. 5th ed. Beijing:Higher Education Press, 2016. (in Chinese)
[24]李俊梅. 高等传热学[M]. 北京:北京工业大学出版社, 2020.LI J M. Advanced heat transfer[M]. Beijing:Beijing University of Technology Press, 2020. (in Chinese)
[25]HAN R B, XU X H, LIANG X G. Simplification method of thermal-fluid network with circulation reflux based on matrix operation[J]. Science China Technological Sciences, 2020, 63(7):1202-1211.
[26]柯艺芬. 非线性方程组迭代解法[M]. 北京:电子工业出版社, 2021.KE Y F. Iterative solution of nonlinear equations[M]. Beijing:Publishing House of Electronics Industry, 2021. (in Chinese)
[27]林远方. 航空发动机燃油综合热管理模拟实验台设计与特性研究[D]. 北京:清华大学, 2023.LIN Y F. Design of experimental simulation bench and characteristic research on integrated thermal management of aeroengine fuel system[D]. Beijing:Tsinghua University, 2023. (in Chinese)
[28]张春本. 超临界压力下碳氢燃料的流动与换热特性研究[D]. 北京:北京航空航天大学, 2011.ZHANG C B. Investigation of flow and heat transfer characteristics of hydrocarbon fuel at supercritical pressures[D]. Beijing:Beihang University, 2011. (in Chinese)
[29]贾洲侠. 超临界压力碳氢燃料在竖直细圆管内流动与换热研究[D]. 北京:北京航空航天大学, 2015.JIA Z X. Flow and heat transfer characteristics of hydrocarbon fuel in vertical miniature tube at supercritical pressures[D]. Beijing:Beihang University, 2015. (in Chinese)
[30]徐志英, 庄达民. 飞机燃油系统热管理研究[J]. 航空动力学报, 2007, 22(11):1833-1837.XU Z Y, ZHUANG D M. Research of heat management for aircraft fuel system[J]. Journal of Aerospace Power, 2007, 22(11):1833-1837. (in Chinese)
[31]WANG J X, LI Y Z, LIU X D, et al. Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China[J]. Chinese Journal of Aeronautics, 2021, 34(2):1-27.
[32]刘铭. 国外飞机综合环境控制系统[J]. 航空科学技术, 2004, (2):28-31.LIU M. Aircraft integrated environmental control system[J]. Aeronautical Science and Technology, 2004, (2):28-31. (in Chinese)
[33]MAALOUF S, ISIKVEREN A, DUMOULIN P, et al. High-temperature heat pump for aircraft engine oil cooling[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(2):472-482.
[1] 孙启轩, 谭磊. 冲击式水轮机水斗设计方法及性能优化[J]. 清华大学学报(自然科学版), 2024, 64(5): 852-859.
[2] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[3] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[4] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[5] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[6] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[7] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[8] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[9] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[10] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[11] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[12] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[13] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[14] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[15] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn