Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (8): 1435-1444    DOI: 10.16511/j.cnki.qhdxxb.2024.27.014
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
机匣类工件五轴铣削工艺系统的刚度建模技术
赵彤1, 卞鹏锡1, 王永飞2, 张毅博2
1. 清华大学 机械工程系, 北京 100084;
2. 北京动力机械研究所, 北京 100074
Stiffness modeling technique for five-axis milling process system with thin-walled parts
ZHAO Tong1, BIAN Pengxi1, WANG Yongfei2, ZHANG Yibo2
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Power Machinery Research Institute, Beijing 100074, China
全文: PDF(9673 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 为了探究机匣类工件五轴铣削工艺系统因刚度不足引起的加工振动问题,该文针对KMC600SU机床、刀具、薄壁类零件及其夹具组成的整体工艺系统进行了建模分析。首先通过有限元分析和锤击实验,确定了工件和刀具部分的动刚度特征和测量方式;然后基于悬挂式电磁激振器的机床动刚度测量装置和XGBoost模型,建立了包含五轴数控机床位姿信息的机床动刚度模型,并通过有限元仿真建立了刀具、零件及夹具的动刚度模型;接着利用刚度串联理论和坐标变换完成对整体工艺系统的动刚度建模。在此基础上,建立一种可以通过铣削实验测量工艺系统动刚度的XGBoost模型,以获取新的工艺系统动刚度数据;最后采用自适应等弦高欠采样算法对已有的工艺系统动刚度模型进行校准和迭代。结果表明该文建立的工艺系统动刚度模型的误差率满足3σ原则。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵彤
卞鹏锡
王永飞
张毅博
关键词 工艺系统机床动刚度建模机器学习    
Abstract:[Objective] The manufacturing industry is witnessing increasing precision requirements for thin-walled components, such as turbine blades and casings, in the field of aerospace engines. This is because these components suffer high material removal rates and poor machining performance, resulting in extreme changes in cutting forces during machining and the formation of chatter marks on the machined surface, leading to decreased surface quality. The relative vibration between the cutting edge and workpiece surface is mainly influenced by the milling forces and stiffness of various parts of the process system. Therefore, modeling of stiffness and analysis of such process systems are crucial for increasing the machining accuracy. [Methods] Based on the research on machine tool modeling using cutting tools, casings, and fixtures available domestically and internationally, simulation calculations and process system analyses were conducted under typical working conditions. A large amount of data was generated through hammering and vibration excitation experiments, and an eXtreme Gradient Boosting (XGBoost) algorithm was employed to establish a stiffness model for a cradle-type AC rotary table structure machine tool; furthermore, this model includes pose information. The stiffness model of the machine tool was integrated with the tool, workpiece, and fixture models obtained via the finite element method using a stiffness series formula and the spatial coordinate transformation method for developing the stiffness model of the process system. The stiffness model’s accuracy was increased through iterative updates. First, the harmonic response of the tool, casing, and fixture was calculated through the finite element simulation. Second, a suspended measurement device for measuring the dynamic stiffness of the machine tool was proposed using an electromagnetic exciter. The device offers the advantages of high excitation power, high measurement signal-to-noise ratio, and measurement ability in different machine tool poses. Subsequently, the dynamic stiffness values of the machine tool in different poses were measured using the exciter. After obtaining the stiffness models of the tool, fixture, and workpiece systems through the finite element method, the overall stiffness modeling of the process system was completed through the stiffness series theory and spatial coordinate transformation. Finally, the calibration and iteration mechanism of the stiffness model of the process system were established. An XGBoost algorithm was established to estimate the dynamic stiffness of the process system using milling force and surface topography information measured through milling experiments. An adaptive undersampling technique for discrete data with equal chord height was proposed to address the severe imbalance between the amounts of dynamic stiffness data obtained through the abovementioned model and vibration excitation test data. [Results] 1) After comparing the measurement results of the hammering experiment with simulation result, the maximum error of the dynamic stiffness obtained through the finite element simulation was <10% and the average error was <6%, indicating that relatively accurate tool and casing models can be obtained through this simulation. 2) After measuring the dynamic stiffness of the machine tool at different poses by using the electromagnetic exciter, the error rate of the machine tool stiffness model established using XGBoost algorithm meets the 3σ criterion. 3) The average error of the XGBoost algorithm for measuring the process system stiffness through milling force and surface topography is less than 13%, with a maximum value of no more than 18%. [Conclusions] The undersampled vibration excitation test data and stiffness data obtained through the cutting experiments were used for calibrating and iterating the stiffness model of the process system, ensuring that the error rate of the model meets the 3σ criterion.
Key wordsmachining complex    machine tool stiffness modeling    machine learning
收稿日期: 2023-08-25      出版日期: 2024-07-19
引用本文:   
赵彤, 卞鹏锡, 王永飞, 张毅博. 机匣类工件五轴铣削工艺系统的刚度建模技术[J]. 清华大学学报(自然科学版), 2024, 64(8): 1435-1444.
ZHAO Tong, BIAN Pengxi, WANG Yongfei, ZHANG Yibo. Stiffness modeling technique for five-axis milling process system with thin-walled parts. Journal of Tsinghua University(Science and Technology), 2024, 64(8): 1435-1444.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.27.014  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I8/1435
[1] KAM M, DEM AI· RTAŞM. Experimental analysis of the effect of mechanical properties and microstructure on tool vibration and surface quality in dry turning of hardened AISI 4340 steels[J]. Surface Review and Letters, 2021, 28(6):2150041.
[2] SANTO D R, MENCIK J M, TANG B, et al. On the dynamic behavior of rods and beams with nonlinear boundary stiffness[C]//Latin American Congress on Computational Methods in Engineering. Paris, France:Université de Technologie de Compiègne, 2018.
[3] 孙孟琴,王立臣.球头铣刀动力学模型及其铣削加工稳定性的研究[J].机床与液压, 2012, 40(9):52-54. SUN M Q, WANG L C. Research on dynamic model and milling stability of ball end milling cutter[J]. Machine Tool&Hydraulics, 2012, 40(9):52-54.(in Chinese)
[4] 邓聪颖,刘蕴,殷国富,等.基于响应面方法的数控机床空间动态特性研究[J].工程科学与技术, 2017, 49(4):211-218. DENG C Y, LIU Y, YIN G F, et al. Research on machine tool spatial dynamic characteristics based on response surface method[J]. Advanced Engineering Sciences, 2017, 49(4):211-218.(in Chinese)
[5] 葛双好,张蔚波,王佩凤,等.基于模态实验的机床进给系统的分析[J].机床与液压, 2015, 43(1):37-40. GE S H, ZHANG W B, WANG P F, et al. Analysis of machine tool feed system based on modal experiment[J]. Machine Tool&Hydraulics, 2015, 43(1):37-40.(in Chinese)
[6] CHOWDHURY A R, PRASAD B, KUMAR V, et al. Design, modeling and open-loop control of a BCF mode bio-mimetic robotic fish[C]//2011 International Siberian Conference on Control and Communications. Krasnoyarsk, Russia:IEEE, 2011:87-92.
[7] 姜越友.五轴机床工作空间动刚度测试方法研究[D].成都:电子科技大学, 2019. JIANG Y Y. Research on experimental method for evaluating dynamic stiffness of five-axis machine tool in workspace[D]. Chengdu:University of Electronic Science and Technology of China, 2019.(in Chinese)
[8] APPRICH S, WULLE F, LECHLER A, et al. Approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools for vibration reduction[J]. Procedia CIRP, 2016, 41:812-817.
[9] 韩松林.动态切削力模拟加载及误差在线测量装置的研究与开发[D].南京:南京航空航天大学, 2016. HAN S L. Research and development of dynamic cutting force loading and online erro measureing device[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016.(in Chinese)
[10] MATSUBARA A, TSUJIMOTO S, KONO D. Evaluation of dynamic stiffness of machine tool spindle by non-contact excitation tests[J]. CIRP Annals, 2015, 64(1):365-368.
[11] KONO D, MORIYA Y, MATSUBARA A. Influence of rotary axis on tool-workpiece loop compliance for five-axis machine tools[J]. Precision Engineering, 2017, 49:278-286.
[12] GUSEV A A. Time domain finite element estimates of dynamic stiffness of viscoelastic composites with stiff spherical inclusions[J]. International Journal of Solids and Structures, 2016, 88-89:79-87.
[13] MOHAMED N, CHONG P L, FARAJI F, et al. Stress analysis of various designs of centrifugal pump impellers using finite element method[J]. Journal of Engineering and Technological Advances, 2022, 7(1):36-46.
[14] 刘宗昊.双柔性铣削系统动力学建模与叶片加工稳定性研究[D].北京:北京交通大学, 2020. LIU Z H. Research on dynamic modeling of double flexible milling system and stability of blade processing[D]. Beijing:Beijing Jiaotong University, 2020.(in Chinese)
[1] 郭雅宁, 徐明伟. 2种低延迟服务的通用优化技术[J]. 清华大学学报(自然科学版), 2024, 64(8): 1306-1318.
[2] 杨云浩, 张国维, 朱国庆, 袁狄平, 贺名欢. 基于机器学习的火源热释放速率预测方法[J]. 清华大学学报(自然科学版), 2024, 64(5): 922-932.
[3] 吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8): 1213-1218.
[4] 代鑫, 黄弘, 汲欣愉, 王巍. 基于机器学习的城市暴雨内涝时空快速预测模型[J]. 清华大学学报(自然科学版), 2023, 63(6): 865-873.
[5] 任建强, 崔亚鹏, 倪顺江. 基于机器学习的新冠肺炎疫情趋势预测方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 1003-1011.
[6] 安健, 陈宇轩, 苏星宇, 周华, 任祝寅. 机器学习在湍流燃烧及发动机中的应用与展望[J]. 清华大学学报(自然科学版), 2023, 63(4): 462-472.
[7] 赵祺铭, 毕可鑫, 邱彤. 基于机器学习的乙烯裂解过程模型比较与集成[J]. 清华大学学报(自然科学版), 2022, 62(9): 1450-1457.
[8] 曹来成, 李运涛, 吴蓉, 郭显, 冯涛. 多密钥隐私保护决策树评估方案[J]. 清华大学学报(自然科学版), 2022, 62(5): 862-870.
[9] 王豪杰, 马子轩, 郑立言, 王元炜, 王飞, 翟季冬. 面向新一代神威超级计算机的高效内存分配器[J]. 清华大学学报(自然科学版), 2022, 62(5): 943-951.
[10] 陆思聪, 李春文. 基于场景与话题的聊天型人机会话系统[J]. 清华大学学报(自然科学版), 2022, 62(5): 952-958.
[11] 李维, 李城龙, 杨家海. As-Stream:一种针对波动数据流的算子智能并行化策略[J]. 清华大学学报(自然科学版), 2022, 62(12): 1851-1863.
[12] 刘强墨, 何旭, 周佰顺, 吴昊霖, 张弛, 秦羽, 沈晓梅, 高小榕. 基于机器学习和瞳孔响应的简易高性能自闭症分类模型[J]. 清华大学学报(自然科学版), 2022, 62(10): 1730-1738.
[13] 马晓悦, 孟啸. 用户参与视角下多图推文的图像位置和布局效应[J]. 清华大学学报(自然科学版), 2022, 62(1): 77-87.
[14] 汤志立, 王雪, 徐千军. 基于过采样和客观赋权法的岩爆预测[J]. 清华大学学报(自然科学版), 2021, 61(6): 543-555.
[15] 王志国, 章毓晋. 监控视频异常检测:综述[J]. 清华大学学报(自然科学版), 2020, 60(6): 518-529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn