Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2014, Vol. 54 Issue (1): 73-77    
  论文 本期目录 | 过刊浏览 | 高级检索 |
三电极非热电弧发生器放电模式的实验研究
王志斌1,陈国旭1,2,王哲1,葛楠1,李和平1(),包成玉1
2. 兰州交通大学 热能工程系, 兰州 730070
Experimental investigation of the discharge modes of a non-thermal arc plasma generator with three-electrode configuration
Zhibin WANG1,Guoxu CHEN1,2,Zhe WANG1,Nan GE1,Heping LI1(),Chengyu BAO1
1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2. Department ofThermal Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
全文: PDF(1996 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

该文提出了一种三电极非热电弧等离子体发生器结构设计,通过引入浮动电极,降低了非热电弧放电的点火电压,获得了稳态的非热电弧放电等离子体。实验结果表明:采用该三电极结构的等离子体发生器所产生的等离子体气体温度在2.0×103~3.0×103 K之间; 在其他参数保持不变的情况下,随着等离子体工作气体流量的增加,存在非热电弧放电、非热电弧-介质阻挡混合放电和表面介质阻挡放电3种不同的放电模式; 在等离子体工作气体流量不变的情况下,增加电源的输入功率将有利于使放电保持在非热电弧放电模式下。三电极结构的非热电弧发生器有助于实际应用中在较低的外加电压下产生非热电弧等离子体,并在较大的气体流量下维持非热电弧等离子体的工作状态。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志斌
陈国旭
王哲
葛楠
李和平
包成玉
关键词 等离子体非热电弧放电模式    
Abstract

A non-thermal arc plasma generator was developed with three-electrode configuration. With the help of the surface dielectric barrier discharge (DBD) produced between the main electrode and floating electrode, the ignition voltage of the non-thermal arc discharge was reduced, and a steady state non-thermal arc plasma was obtained. Experiments show that the temperature of the non-thermal arc generated using this three-electrode plasma generator is 2.0×103-3.0×103K and that there exist three different operating modes, i.e., the non-thermal arc mode, the non-thermal arc-DBD hybrid mode, and the surface DBD mode, with the increase of the plasma working gas flow rate while keeping other parameters unchanged. The results also show that increasing the power input at a constant gas flow rate benefits maintaining a non-thermal arc discharge mode. The developed non-thermal arc plasma generator is useful for producing non-thermal arc plasmas at low applied voltages, and for maintaining non-thermal arc discharges at high gas flow rates.

Key wordsplasma    non-thermal arc    discharge mode
收稿日期: 2011-05-12      出版日期: 2014-01-15
ZTFLH:     
基金资助:国家自然科学基金资助项目(11035005)
引用本文:   
王志斌, 陈国旭, 王哲, 葛楠, 李和平, 包成玉. 三电极非热电弧发生器放电模式的实验研究[J]. 清华大学学报(自然科学版), 2014, 54(1): 73-77.
Zhibin WANG, Guoxu CHEN, Zhe WANG, Nan GE, Heping LI, Chengyu BAO. Experimental investigation of the discharge modes of a non-thermal arc plasma generator with three-electrode configuration. Journal of Tsinghua University(Science and Technology), 2014, 54(1): 73-77.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2014/V54/I1/73
  非热电弧放电等离子体实验平台示意图
  三电极非热电弧等离子体发生器结构示意图
  三电极非热电弧发生器放电的伏安特性曲线
Ld/mm Vb/kV Varc/kV VDBD /kV
6.0 7.9 6.0 4.0
9.0 9.6 7.7 3.9
12.0 12.2 9.1 3.9
  采用不同结构等离子体发生器时的气体放电电压比较
  混合放电模式的V-t曲线图(QAir=27.0 L·min-1)
  非热电弧等离子体气体温度沿两主电极中间对称平面的分布
[1] LI Heping, SUN Wenting, WANG Huabo, et al.Electrical features of radio-frequency, atmospheric pressure, bare-metallic-electrode glow discharges [J]. Plasma Chemistry and Plasma Process, 2007, 27: 529-545.
[2] Kalra C S, Cho Y I, Gutsol A,et al.Gliding arc in tornado using a reverse vortex flow[J]. Review of Scientific Instruments, 2005, 76: 025110.
[3] DU Changming, YAN Jianhua, Cheron B. Decomposition of toluene in a gliding arc discharge plasma reactor[J]. Plasma Sources Science and Technology, 2007, 16: 791-797.
[4] ZHAO Yuhan, MA Qiang, XIA Weidong. Study and measurement of glidarc driven by magnetic field[J]. Plasma Science and Technology, 2008, 10(1): 65-69.
[5] YU Liang, LI Xiaodong, TU Xin, et al.Decomposition of naphthalene by dc gliding arc gas discharge[J]. Journal of Physical Chemistry A, 2010, 114: 360-368.
[6] DU Changming, YAN Jianhua, Cheron B G. Degradation of 4-chlorophenol using a gas-liquid gliding arc discharge plasma reactor[J]. Plasma Chemistry and Plasma Processing, 2007, 27: 635-646.
[7] Fridman A, Nester S, Kennedy L A, et al.Gliding arc gas discharge[J]. Progress in Energy and Combustion Science, 1999, 25: 211-231.
[8] Fulcheri L, Rollier J D, Gonzalez-Aguilar J. Design and electrical characterization of a low current-high voltage compact arc plasma torch[J]. Plasma Sources Science and Technology, 2007, 16: 183-192.
[9] Raizer Y P, Gas Discharge Physics[M]. Berlin: Springer-Verlag, 1991.
[10] Laux C O, Spence T G, Kruger C H, et al.Optical diagnostics of atmospheric pressure air plasmas[J]. Plasma Sources Science and Technology, 2003, 12: 125-138.
[11] LUOSiqi, Denning C M, Scharer J E. Laser-rf creation and diagnostics of seeded atmospheric pressure air and nitrogen plasmas[J]. Journal of Applied Physics, 2008, 104: 013301.
[12] ThiyagarajanM, Scharer J. Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air[J]. Journal of Applied Physics, 2008, 104: 013303.
[1] 郭云涛, 张东荷雨, 张丽阳, 彭思琦, 罗海云, 帖金凤, 王新新. 新型冠状病毒等病原体空气消毒技术综述[J]. 清华大学学报(自然科学版), 2021, 61(12): 1438-1451.
[2] 吴贵清, 葛楠, 杨安, 李和平, 包成玉. 压力对双射流电弧等离子体特性的影响[J]. 清华大学学报(自然科学版), 2014, 54(1): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn