Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2014, Vol. 54 Issue (1): 97-101    
  论文 本期目录 | 过刊浏览 | 高级检索 |
重力场作用下三种不同燃料液滴在垂直电场中的燃烧特性
方朝纲,宋蔷,仲蕾,熊刚,姚强()
 
Combustion behavior of three different fuel droplets in vertical electric field under gravity
Chaogang FANG,Qiang SONG,Lei ZHONG,Gang XIONG,Qiang YAO
Key Laboratory of Thermal Science and Power Engineering of Ministry of Education,Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1237 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

该文选取丙醇、癸烷、柴油为实验液滴燃料,通过利用高速摄像机对液滴燃烧时火焰和粒径的实时测量,以及激光诱导白炽光(LII)对碳烟体积分数的测量方法,研究了重力场作用下液滴在垂直电场中的燃烧特性。研究结果表明: 三种燃料火焰高度均随极板间电压的增加而增加,火焰宽度随极板间电压的增加而减小; 丙醇燃烧基本不生成碳烟,癸烷及柴油火焰中碳烟体积分数随极板间电压增加而减少; 燃烧速率常数随极板间电压的增加而增加,其中丙醇、癸烷、柴油燃烧速率常数最大增加值分别为9%、20%、30%。分析研究表明: 电场对火焰的拉伸有助于抑制碳烟的生成和促进碳烟的氧化,降低了火焰中的碳烟生成量,削弱了碳烟对外的辐射换热,从而促进了燃料的燃烧。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方朝纲
宋蔷
仲蕾
熊刚
姚强
关键词 电场火焰燃烧速率常数碳烟体积分数辐射换热    
Abstract

Propanol, n-decane, and diesel droplets were selected as experimental samples to study combustion behavior of fuel droplets in a vertical electric field under gravity. A high speed camera was used to measure the combustion flame and droplet size, with laser-induced incandescence (LII) applied to determining soot volume fractions. The results show that the flame height of each fuel increases with increasing electrodes voltage, while the flame width decreases with increasing electrodes voltage. Propanol droplet combustion does not produce soot, with n-decane and diesel flame soot volume fraction decreasing with increasing electrodes voltage. Burning rate constants increase with increasing electrodes voltage with the maximum burning rate constant increasing by 9%, 20%, and 30% for propanol, decane, and diesel, respectively. Analyses show that electric field stretching on the flame induces soot formation suppression and promotes soot oxidation, reducing soot generation and weakening soot external radiation heat transfer, so as to promote fuel combustion.

Key wordselectric field    flame    burning rate constant    soot volume fraction    radiation heat transfer
收稿日期: 2012-04-28      出版日期: 2015-04-16
ZTFLH:     
基金资助:国家自然科学基金资助项目(51076072)
引用本文:   
方朝纲, 宋蔷, 仲蕾, 熊刚, 姚强. 重力场作用下三种不同燃料液滴在垂直电场中的燃烧特性[J]. 清华大学学报(自然科学版), 2014, 54(1): 97-101.
Chaogang FANG, Qiang SONG, Lei ZHONG, Gang XIONG, Qiang YAO. Combustion behavior of three different fuel droplets in vertical electric field under gravity. Journal of Tsinghua University(Science and Technology), 2014, 54(1): 97-101.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2014/V54/I1/97
  实验系统示意图
  三种不同液滴燃烧时火焰形貌的对比
  火焰高度与极板间电压的关系曲线
  火焰宽度与极板间电压的关系曲线
  碳烟体积分数随着燃烧时间的变化规律(U=0 kV)
  最大碳烟体积分数与极板间电压的变化关系
  液滴在电场作用下燃烧时d2定律
  燃烧速率常数与极板间电压的变化关系
[1] Bradley D. The effect of electric fields on combustion process [M]//Advanced Combustion Methods. London: Academic Press, 1986.
[2] Lawton J, Weinberg F J. Electrical aspects of combustion [M]. Oxford: Clarendon Press, 1969.
[3] Saito M, Sato M, Sawada K. Variation of flame shape and soot emission by applying electric field [J]. Journal of Electrostatics, 1997, 39(4): 305-311.
[4] van den Boom J D B J, Konnov A A, Verhasselt A M H H, et al. The effect of a DC electric field on the laminar burning velocity of premixed methane/air flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 1237-1244.
[5] Wang Y, Nathan G J, Alwahabi Z T, et al.Effect of a uniform electric field on soot in laminar premixed ethylene/air flames[J]. Combustion and Flame, 2010, 157(7): 1308-1315.
[6] Saito M, Arai T, Arai M. Control of soot emitted from acetylene diffusion flames by applying an electric field[J]. Combustion and Flame, 1999, 119(3): 356-366.
[7] Vega E V, Sung S S, Lee K Y. NO emission of oxygen-enriched CH4/O2/N2 premixed flames under electric field[J]. Fuel, 2007, 86(4): 512-519.
[8] Imamura O, Kubo Y, Osaka J,et al.A study on single fuel droplets combustion in vertical direct current electric fields[J]. Proceedings of the Combustion Institute, 2005, 30(2): 1949-1956.
[9] Imamura O, Kubo Y, Osaka J, et al.Observation of sooting behavior in single droplets in combustion in direct current electric fields under microgravity[J]. Microgravity Science and Technology, 2005, 17(1): 13-17.
[10] Choi M Y, Lee K O. Investigation of sooting in microgravity droplet combustion[J]. Symposium (International) on Combustion, 1996, 26(1): 1243-1249.
[11] Okai K, Moriue O, ArakiI M, et al. Combustion of single droplets and droplet pairs in a vibrating field under microgravity[J]. Proceedings of the Combustion Institute, 2000, 28(1): 977-983.
[12] Belhi M,Domingo P, Vervisch P. Direct numerical simulation of the effect of an electric field on flame stability[J]. Combustion and Flame, 2010, 157(12): 2286-2297.
[13] Chang K C, Shieh J S. Theoretical investigation of transient droplet combustion by considering flame radiation[J]. International Journal of Mass and Heat Transfer, 1995, 38(14): 2611-2621.
[1] 罗凌, 杨朝翔, 梅红伟, 赵晨龙, 王黎明, 关志成. 10kV固体绝缘真空断路器外绝缘体电场[J]. 清华大学学报(自然科学版), 2015, 55(5): 585-591.
[2] 郑东, 钟北京. 四组分汽油替代燃料的化学动力学模型[J]. 清华大学学报(自然科学版), 2015, 55(10): 1135-1142.
[3] 吴韶华,张健. 湍流预混射流火焰直接模拟中入口条件的确定[J]. 清华大学学报(自然科学版), 2014, 54(6): 834-838.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn