Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2014, Vol. 54 Issue (2): 164-171    
  论文 本期目录 | 过刊浏览 | 高级检索 |
Monte Carlo方法的最优源项偏倚抽样密度函数
苏健,曾志(),程建平,李君利
 
Optimal source biased sampling density function for the Monte Carlo method
Jian SU,Zhi ZENG(),Jianping CHENG,Junli LI
Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(1326 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

Monte Carlo粒子输运中的源项偏倚抽样方法可以减小方差、提高计算效率。该文通过建立一个多区域分权重数学投篮模型,模拟了输运过程中的源项信息,得到了源项偏倚抽样方差最小时的最佳抽样密度函数解析式。采用随机数值方法对模型进行了计算,验证了函数的正确性,并举一例实际的粒子输运模拟问题,表明最优偏倚抽样方法对减小方差的效果显著。该方法可作为一种普适的减方差技巧应用于Monte Carlo粒子输运中,可用于构造粒子源参数(如位置、发射方向等)的最佳偏倚密度函数,尤其在分层抽样时能给出方差最小的最优各层比例系数。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏健
曾志
程建平
李君利
关键词 Monte Carlo方法源项偏倚抽样减方差最优偏倚密度函数分层抽样    
Abstract

The source biased sampling method reduces the variance and improves the efficiency of Monte Carlo particle transport calculations. This paper gives a multi-region, multi-weight shooting model to simulate the source in transport processes. The density function gives the minimum variance for source biased sampling. The model is solved using a random numerical method to verify the correctness of the function. A particle transportation problem is then simulated to show the significant effect of the variance reduction. This method can be used as a general variance reduction technique in Monte Carlo particle transport analyses to construct the density function for biased source sampling for various particle source parameters, such as the transmission location and direction. It gives the best partition coefficient with the minimum variance in stratified sampling.

Key wordsMonte Carlo method    source biasing sampling    variance reduction    optimal bias density function    stratified sampling
收稿日期: 2012-07-19      出版日期: 2015-04-16
ZTFLH:     
基金资助:国家自然科学基金资助项目 (11175099, 11035002, 11075091, 11105081);清华大学自主科研计划资助项目 (2011THZ07)
引用本文:   
苏健, 曾志, 程建平, 李君利. Monte Carlo方法的最优源项偏倚抽样密度函数[J]. 清华大学学报(自然科学版), 2014, 54(2): 164-171.
Jian SU, Zhi ZENG, Jianping CHENG, Junli LI. Optimal source biased sampling density function for the Monte Carlo method. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 164-171.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2014/V54/I2/164
X Y PX
1 0
A 0.06 0.54 0.6
B 0.09 0.27 0.3
C 0.08 0.02 0.1
PY 0.23 0.77
  XY的联合概率表
投篮
区域
分配
比例
投篮
次数
投中
概率
投中
次数
计数
权重
期望 均方差
A 0.6 18 000 0.1 1 800 1
B 0.3 9 000 0.3 2 700 1 0.23 0.420 8
C 0.1 3 000 0.8 2 400 1
  未采用偏倚抽样时投篮问题的均方差
投篮
区域
分配
比例
投篮
次数
投中
概率
投中
次数
计数
权重
期望 均方差
A 0.427 8 12 835 0.1 128 4 1.402
B 0.370 5 11 115 0.3 333 5 0.810 0.23 0.379 2
C 0.201 7 6 050 0.8 484 0 0.496
  采用最优偏倚抽样时投篮问题的均方差
  方差σ随分配比例x1x2的变化趋势
  未偏倚抽样时源位置半径的概率密度函数
层号 体积
Vi/cm3
体积份额
vi
名义半径
ri/cm
名义分配比例
fi
PX*(x=i) 模拟粒子数
N
计数权重
wi
1 31 940 0.023 22.5 0.168 1 0.596 0 5 959 445 0.038
2 47 647 0.034 27.5 0.069 2 0.245 3 2 453 388 0.138
3 66 497 0.047 32.5 0.027 5 0.097 7 976 623 0.485
4 88 488 0.063 37.5 0.011 7 0.038 0 379 564 1.661
5 113 621 0.081 42.5 4.1×10-3 0.014 5 144 895 5.588
6 141 895 0.101 47.5 1.5×10-3 5.5×10-3 54 547 18.54
7 173 311 0.124 52.5 5.7×10-4 2.0×10-3 20 307 60.82
8 207 869 0.148 57.5 2.1×10-4 7.5×10-4 7 491 197.75
9 245 568 0.175 62.5 7.7×10-5 2.7×10-4 2 743 637.99
10 286 409 0.204 67.5 2.8×10-5 1.0×10-4 998 2 045.14
总计 1 403 245 1 0.282 0 1 1.0×107
  分层偏倚抽样参数
  分层偏倚抽样时源位置半径的概率密度函数
  分层偏倚抽样时的纠偏权重函数
  连续偏倚抽样时源位置半径的概率密度函数
  连续偏倚抽样时的纠偏权重函数
  3种偏倚抽样类型模拟结果
[1] 裴鹿成. 蒙特卡罗方法中的若干问题[J]. 原子能科学技术, 1963(6): 422-431. PEI Lucheng. Several issues in Monte Carlo method[J]. Atomic Energy Science and Technology, 1963(6): 422-431. (in Chinese)
[2] 董秀芳. 蒙特卡罗方法及其基本特点[J]. 原子能科学技术, 1978(3): 277-289. DONG Xiufang. Monte Carlo method and its basic characteristics[J]. Atomic Energy Science and Technology, 1978(3): 277-289. (in Chinese)
[3] 朱辉, 刘义保, 游运. 蒙特卡罗方法与拟蒙特卡罗方法的历史、现状及展望[J]. 东华理工大学学报: 自然科学版, 2010, 33(4): 357-362. ZHU Hui, LIU Yibao, YOU Yun. Monte Carlo method and quasi-Monte Carlo method[J]. Journal of East China Institute of Technology: Natural Science, 2010, 33(4): 357-362. (in Chinese)
[4] 裴鹿成, 张孝泽. 蒙特卡罗方法及其在粒子输运问题中的应用 [M]. 北京: 科学出版社, 1986. PEI Lucheng, ZHANG Xiaoze. Monte Carlo Methods and Application in Particle Transportation Problem [M]. Beijing: Science Press, 1986. (in Chinese)
[5] 裴鹿成. 计算机随机模拟 [M]. 长沙: 湖南科学出版社, 1989. PEI Lucheng. Computer Random Simulation [M]. Changsha: Hunan Science & Technology Press, 1989. (in Chinese)
[6] 朱永生. 实验物理中的概率和统计 [M]. 北京: 原子能出版社, 2006. ZHU Yongsheng. Probability and Statistics in Experimental Physics [M]. Beijing: Atomic Energy Press, 2006. (in Chinese)
[7] 张崭, 李君利, 武祯, 等. 内照射小器官剂量计算中减方差技巧的比较和应用[J]. 清华大学学报: 自然科学版, 2007, 47(S1): 1051-1056. ZHANG Zhan, LI Junli, WU Zhen, et al.Comparison and application of variance-reduction techniques used in internal radiation dose calculations for small organs[J]. Journal of Tsinghua University: Science and Technology, 2007, 47(S1): 1051-1056. (in Chinese)
[8] 武祯, 李君利. 用于探测器校正因子计算的Monte Carlo方法[J]. 清华大学学报: 自然科学版, 2006, 46(9): 1585-1588. WU Zhen, LI Junli. Monte Carlo method for calculating particle radiation detector correction factors[J]. Journal of Tsinghua University: Science and Technology, 2006, 46(9): 1585-1588. (in Chinese)
[9] Bielajew A F. Correction factors for thick-walled ionization chambers in point-source photon beams[J]. Phys Med Biol, 1990, 35(4): 501-516.
[10] Hedtjarn H, Carlsson G, Williamson J F. Accelerated Monte Carlo-based dose calculations for brachytherapy planning using correlated sampling[J]. Phys Med Biol, 2002, 47(3): 351-376.
[11] Buckley L A, Kawrakow I, Rogers D W O. CSnrc: Correlated sampling Monte Carlo calculations using EGSnrc[J]. Med Phys, 2004, 31(12): 3425-3435.
[12] 武祯, 李君利, 程建平. 一种改进的计算探测器校正因子的相关抽样方法[J]. 高能物理与核物理, 2006, 30(8): 771-775. WU Zhen, LI Junli, CHENG Jianping. An improved correlated sampling method for calculating correction factor of detector[J]. High Energy Physics and Nuclear Physics, 2006, 30(8): 771-775. (in Chinese)
[13] 许淑艳. 蒙特卡罗方法在实验核物理中的应用 [M]. 北京: 原子能出版社, 1996. XU Shuyan. Monte Carlo Method in Experimental Nuclear Physics [M]. Beijing: Atomic Energy Press, 1996. (in Chinese)
[14] 邱睿, 李君利, 曾志. 邮件辐照系统屏蔽的Monte Carlo计算[J]. 清华大学学报: 自然科学版, 2004, 44(3): 297-300. QIU Rui, LI Junli, ZENG Zhi. Monte Carlo calculation of the shielding of mail irradiation systems[J]. Journal of Tsinghua University: Science and Technology, 2004, 44(3): 297-300. (in Chinese)
[15] 王汝赡, 姜宏宇. 方向偏移法及其在光子输运模拟中的应用[J]. 核电子学与探测技术, 1998, 18(3): 177-181. WANG Rushan, JIANG Hongyu. Direction biasing method and its application in γ ray transportation simulation[J]. Nuctear Eleetronics & Detection Technology, 1998, 18(3): 177-181. (in Chinese)
[16] Olsher R H. A practical look at Monte Carlo variance reduction methods in radiation shielding[J]. Nuclear Engineering and Technology, 2006, 38(4): 225-230.
[17] MCNP Monte Carlo Team, X-5. MCNP5_RSICC_1.30, LA-UR-04.5921 [R]. Los Alamos, NM: Los Alamos National Laboratory, 2004.
[18] Hendricks J S, McKinney G W, Waters L S, et al. MCNPX, Version 2.5.3, LA-UR-04-0569 [R]. Los Alamos, NM: Los Alamos National Laboratory, 2004.
[19] Booth T E. A Sample Problem in Variance Reduction in MCNP, LA-10363-MS [R]. Los Alamos, NM: Los Alamos National Laboratory, 1985.
[20] Fassò A, Ferrari A, Ranft J, et al.FLUKA: Performances and applications in the intermediate energy range [C]//Proc 1st AEN/NEA Specialists' Meeting on Shielding Aspects of Accelerators, Targets and Irradiation Facilities (SATIF 1). Arlington, TX: OECD Documents, 1995: 287-304.
[21] Allison J, Amako K, Apostolakis J, et al.GEANT4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-277.
[1] 徐悟, 于清, 尧国皇. 初应力对钢管混凝土叠合柱轴压性能影响[J]. 清华大学学报(自然科学版), 2014, 54(5): 556-562.
[2] 魏亚, 姚湘杰. 约束状态下混凝土拉伸徐变模型[J]. 清华大学学报(自然科学版), 2014, 54(5): 563-567.
[3] 龙奋杰, 龙振兴, 王萧濛. 产权约束对景气市场住房报价的影响——基于Stein模型的改进与数值模拟[J]. 清华大学学报(自然科学版), 2014, 54(5): 596-601.
[4] 王振波, 张君, 罗孙一鸣. 喷水法成型纤维网增强水泥基板材抗弯性能[J]. 清华大学学报(自然科学版), 2014, 54(5): 551-555.
[5] 杨宏伟, 王昊宇, 刘云霞, 刘文君, 杨少霞. O3-BAC工艺对含溴水体消毒副产物生成势的影响[J]. 清华大学学报(自然科学版), 2014, 54(5): 607-612.
[6] 林朋飞, 张晓健, 陈超, 汪隽. 含钼废水处理及饮用水应急处理技术及工艺[J]. 清华大学学报(自然科学版), 2014, 54(5): 613-618.
[7] 闵琪, 段远源, 王晓东. 格子Boltzmann模型结合MPR方程模拟流体饱和气液密度[J]. 清华大学学报(自然科学版), 2014, 54(5): 619-623.
[8] 赵娜, 王兆印, 潘保柱, 李志威, 段学花. 小江流域不同强度河床结构的生态学作用[J]. 清华大学学报(自然科学版), 2014, 54(5): 584-589.
[9] 张红, 张洋, 陈玄冰. 基于经济学实验的信息传递过程中北京二手房信息扩散程度测算[J]. 清华大学学报(自然科学版), 2014, 54(5): 602-606.
[10] 卓子寒, 王婕, 翟伟明, 王亨, 唐劲天. 热籽介导磁感应热疗稳态温度场仿真[J]. 清华大学学报(自然科学版), 2014, 54(5): 638-642.
[11] 郝琛, 李富, 郭炯. 球床式高温气冷堆球流混流的模拟[J]. 清华大学学报(自然科学版), 2014, 54(5): 624-628.
[12] 江锋, 庄子威, 张振中, 尉继英. 用于HEPA滤料效率检测的蒸发冷凝技术[J]. 清华大学学报(自然科学版), 2014, 54(5): 629-632.
[13] 张明立, 任淑霞. 参与情境下顾客心理感知对关系利益的实证检验[J]. 清华大学学报(自然科学版), 2014, 54(5): 664-671.
[14] 张志强, 胡山鹰, 陈定江, 沈静珠, 杜风光. 燃料乙醇系统不确定性分析及优化[J]. 清华大学学报(自然科学版), 2014, 54(5): 643-648.
[15] 刘伟强, 吕聪伟, 蒲婷, 颜滨, 廖振华. 颈椎前路三节段融合与置换混合术的力学特性[J]. 清华大学学报(自然科学版), 2014, 54(5): 685-689.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn