Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2014, Vol. 54 Issue (5): 575-583    
  论文 本期目录 | 过刊浏览 | 高级检索 |
HydroMP:基于云计算的水动力学建模及计算服务平台
刘荣华1,魏加华1(),翁燕章1,王光谦1,唐爽2
2. 中国石油勘探开发研究院,北京 100083
HydroMP: A cloud computing based platform for hydraulic modeling and simulation service
Ronghua LIU1,Jiahua WEI1(),Yanzhang WENG1,Guangqian WANG1,Shuang TANG2
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
全文: PDF(1627 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

为解决传统开发水利模拟服务模式中存在的计算精度与效率矛盾及模型接口不统一等技术瓶颈,构建了基于云计算的水动力学模拟服务平台,并提出云计算模式下一维水动力学模型的集成方法和调度模式,通过对模拟模型数据接口、模型调用、模型交互及处理、计算资源分配等方面进行封装,采用Web Service、 XML (Extensible Markup Language)及OpenMI (Open Model Interface)等技术实现了云计算平台下模型的调用、模型与平台间的数据交换和资源动态分配。以南水北调中线工程水力响应分析为例,应用开发的云计算水动力学模型进行了多方案、多层次的模拟计算,在计算效率、兼容性等方面具有良好的效果。研究表明:云计算模式下,可实现水动力学模型在广域互联网上的多客户端、多用户、多方案并发计算,采用云端计算和存储模式降低了高性能计算的门槛,提高了模型复用率和计算资源利用效率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘荣华
魏加华
翁燕章
王光谦
唐爽
关键词 云计算水动力学模型模型集成Web Service    
Abstract

Computing accuracy in large CFD problems is restricted by the computation cost. A hydraulic modelling platform (HydroMP) was constructed using computing cloud to reduce costs and to provide a uniform interface between the dataset and the model for hydraulic models. This paper gives a generic integration method for hydraulic models and a scheduling mode for the cloud computing. The system includes the models and computing resources, including the data interface, model calls and interactions and computations of resource allocation using Web Services, XML(Extensible Markup Language) and OpenMI(Open Model Interface). This design assures that the cloud computing platform can conveniently call the models, exchange data between the servers and the clients, and dynamically allocate the computing resources including multiple cores and multiple nodes. The platform with the integrated flow model is used to analyze the hydraulic response to a change in the discharge of the South-to-North Water Diversion Project, which is a multi-client, multi-level and multi-scheme simulation. The results indicate that this model improves the computational efficiency and compatibility. This hydraulic computing model based on cloud computing theory allows multiple schemes be solved simultaneously using multiple clients in a WAN Internet and multiple users. The cloud computing model lowers the threshold for using HPC resources and improves the utilization efficiency of computation resources.

Key wordscloud computing    hydraulic models    model-integration    Web Services
收稿日期: 2013-09-22      出版日期: 2014-05-15
ZTFLH:     
基金资助:“十二五”国家科技支撑计划资助项目(2013BAB05B03,2013BAB05B05);水利部公益性行业科研专项(201201050);水沙科学与水利水电工程国家重点实验室自主课题(2012-KY-05)
引用本文:   
刘荣华, 魏加华, 翁燕章, 王光谦, 唐爽. HydroMP:基于云计算的水动力学建模及计算服务平台[J]. 清华大学学报(自然科学版), 2014, 54(5): 575-583.
Ronghua LIU, Jiahua WEI, Yanzhang WENG, Guangqian WANG, Shuang TANG. HydroMP: A cloud computing based platform for hydraulic modeling and simulation service. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 575-583.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2014/V54/I5/575
  HydroMP的总体框架
  一维水动力学模型的数据结构
  类的引用关系
  类创建及引用流程
  基于管道及MPI的并行集成模式
运行阶段 调用过程 参数
初始化 Initialize() Simulation
GetComptime() Simulation
创建管道 Validate() Simulation
Create_Pipe() pipeID
数据交换 SimuConvert2ByteStr() Simulation
数据传输 SimustrTransfer() SimuByteString
数值计算 PerformTimestep() TimeStepNum
GetResult() SID, Timespan
SaveState() State
ClearState() StateID
完成 Resultupload() ResultArray
Releasecache() SID
  可交互集成阶段及调用的过程
工况 渠首通过流量占比 /% 变化用时/min 方案计算范围
初始时刻 终止时刻 渠首流量变化 闸门开度 分水口流量
1 70 50 10 10 10 全线
2 70 10 30 30 30 全线
3 70 80 10 10 10 全线
4 10 70 30 30 30 全线
5 70 10 30 30 30 黄河以南段和黄河以北段
  总干渠输水流量变化工况组合表
  方案提交界面
项目 性能
头节点及服务器 16核(2.4 GHz), 156 GB内存
计算节点 20个计算节点,单计算节点含24核(2.4 GHz)、 32 GB内存。
  云计算服务器配置
序号 方案名 计算时长/h 所选模型 模型类型 计算时间/s 原计算时间/s 加速比
1 工况1 2 000 JPWSPC-SC 串行集成 415 400
2 工况2 2 000 JPWSPC-SC 串行集成 400 398
3 工况3 2 000 JPWSPC-MPI 并行集成 56 390 6.9
4 工况4 2 000 JPWSPC-MPI 并行集成 54 425 7.87
5 工况5 2 000 JPWSPC-MPI 并行集成 61 388 6.26
  不同方案、不同模型的计算速度对比表
[1] Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289.
[2] 张刚,解建仓,罗军刚. 洪水预报模型组件化及应用[J], 水利学报, 2011, 42(12): 1479-1486. ZHANG Gang, XIE Jiancang, LUO Jungang. Componentized model of flood forecast and its application[J]. Journal of Hydraulic Engineering, 2011, 42(12): 1479-1486. (in Chinese)
[3] Gregersen J B, Gijsbers P J A, Westen S J P. OpenMI: Open modelling interface[J]. Journal of Hydroinformatics, 2007, 9(3): 175-191.
[4] Bulatewicz T, Allen A, Peterson J M, et al.The simple script wrapper for OpenMI: Enabling interdisciplinary modelling studies[J]. Environmental Modelling & Software, 2013, 39: 283-294.
[5] Sun A. Enabling collaborative decision-making in watershed management using cloud-computing services[J]. Environmental Modelling & Software, 2013, 41: 93-97.
[6] Burger C M, Kollet S, Schumacher J, et al.Introduction of a web service for cloud computing with the integrated hydrologic simulation platform ParFlow[J]. Computers & Geosciences, 2012, 48: 334-336.
[7] Ari I, Muhtaroglu N. Design and implementation of a cloud computing service for finite element analysis [J]. Advances in Engineering Software, 2013, 60-61: 122-135.
[8] Horsburgh J S, Tarboton D G, Maidment D R, et al.A relational model for environmental and water resources data[J]. Water Resources Research, 2008, 44(5): W05406.
[9] Horsburgh J S, Tarboton D G, Schreuders K A T, et al. HydroServer: A platform for publishing space-time hydrologic datasets [Z/OL]. (2013-06-09). http://his.cuahsi.org/documents/JSH_SpringRunoff_HydroServer_2012.pdf.
[10] Ames D P, Horsburgh J S, Cao Y, et al.HydroDesktop: Web services-based software for hydrologic data discovery, download, visualization, and analysis[J]. Environmental Modelling & Software, 2012, 37: 146-156.
[11] Booch G, Maksimchuk R A, Engle M W, et al.Object-Oriented Analysis and Design with Applications[M]. Boston, USA: Addison Wesley, 2007.
[12] 周振红,任慧,杜丽平. Fortran DLL 组件集成到. NET平台(一)[J]. 武汉大学学报: 工学版, 2005, 38(4): 100-104. ZHOU Zhenhong, REN Hui, DU Liping. Fortran DLL component being integrated into Microsoft. NET framework[J]. Engineering Journal of Wuhan University, 2005, 38(4): 100-104. (in Chinese)
[13] 朱仕杰,南卓铜,陈昊,等. 基于Web Service的在线水文模型服务研究[J]. 遥感技术与应用, 2010, 25(6): 853-859. ZHU Shijie, NAN Zhuotong, CHEN Hao, et al.Online hydrological model service using web service[J]. Remote Sensing Technology and Application, 2010, 25(6): 853-859. (in Chinese)
[14] ZHU Dejun, CHEN Yongcan, WANG Zhiyong, et al.Simple,robust, and efficient algorithm for gradually varied subcritical flow simulation in general channel networks[J]. Journal of Hydraulic Engineering—ASCE, 2011, 137(7): 766-774.
[1] 曹来成, 李运涛, 吴蓉, 郭显, 冯涛. 多密钥隐私保护决策树评估方案[J]. 清华大学学报(自然科学版), 2022, 62(5): 862-870.
[2] 李清, 樊一萍, 李大川, 蒋欣, 刘恩钰, 陈甲. 基于微服务的飞行管理系统仿真:体系与方法[J]. 清华大学学报(自然科学版), 2020, 60(7): 589-596.
[3] 徐志, 马静, 王浩, 赵建世, 胡雅杰, 杨贵羽. 长江口影响水资源承载力关键指标与临界条件[J]. 清华大学学报(自然科学版), 2019, 59(5): 364-372.
[4] 王开, 刘荣华, 魏加华, 刘启, 王光谦. 水力模拟云平台HydroMP的模型集成方法[J]. 清华大学学报(自然科学版), 2019, 59(12): 1006-1015.
[5] 李陶深, 刘青, 黄汝维. 云环境中基于代理重加密的多用户全同态加密方案[J]. 清华大学学报(自然科学版), 2018, 58(2): 143-149.
[6] 杨飞, 傅旭东. 垂向基于谱方法的三维弯道水流模型[J]. 清华大学学报(自然科学版), 2018, 58(10): 914-920.
[7] 刘金钊, 周悦芝, 张尧学. 基于小波分析的云计算在线业务异常负载检测方法[J]. 清华大学学报(自然科学版), 2017, 57(5): 550-554.
[8] 王于丁, 杨家海. 一种基于角色和属性的云计算数据访问控制模型[J]. 清华大学学报(自然科学版), 2017, 57(11): 1150-1158.
[9] 刘扬, 魏蔚. 面向海量流媒体信道资源分配快速Nash议价算法[J]. 清华大学学报(自然科学版), 2017, 57(10): 1056-1062.
[10] 赵富龙, 薄涵亮, 刘潜峰. 压力变化条件下静止液滴相变模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 759-764,771.
[11] 王志华, 庞海波, 李占波. 一种适用于Hadoop云平台的访问控制方案[J]. 清华大学学报(自然科学版), 2014, 54(1): 53-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn