Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2014, Vol. 54 Issue (5): 619-623    
  论文 本期目录 | 过刊浏览 | 高级检索 |
格子Boltzmann模型结合MPR方程模拟流体饱和气液密度
闵琪1(),段远源2,王晓东3
2.清华大学 热科学与动力工程教育部重点实验室,北京 100084
3.华北电力大学 新能源电力系统国家重点实验室,北京 102206
Lattice Boltzmann method for the fluid saturation density based on the volume translated Peng-Robinson equation of state
Qi MIN1(),Yuanyuan DUAN2,Xiaodong WANG3
1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
2. Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China
3. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
全文: PDF(1285 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

格子Boltzmann伪势能两相模型由于缺少与真实流体相关的物理参数,因此无法实现对某种特定流体的模拟。本文将比容平移后的Peng-Robinson状态方程(MPR)引入模型中,通过状态方程中的无量纲参数偏心因子和临界压缩因子,建立模拟流体与真实流体的关联,使得模型可以区别各种真实流体,并模拟了氩、氧气、烷烃等8种流体在不同温度下的饱和气液相密度。 结果表明,MPR和Peng-Robinson方程(PR)的格子Boltzmann两相模型均能很好的描述8种流体的饱和气相密度; 而MPR方程能够很好的再现氩、氮气、氧气等非极性流体的饱和液相密度,对于其它流体,MPR方程较PR方程对液相密度的描述有所改进,但仍与实验数据有一定差异。总体上MPR方程能够更好地模拟不同流体的饱和气液相密度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闵琪
段远源
王晓东
关键词 格子Boltzmann气液两相流状态方程比容平移饱和液相密度    
Abstract

The lattice Boltzmann pseudo-potential model has few parameters for real fluids. In this study, the volume translated Peng-Robinson equation of state (MPR) was incorporated into the lattice Boltzmann pseudo-potential model with two parameters, the acentric factor and the critical compressibility, used to determine the real fluid parameters. The MPR was used to calculate the dimensionless liquid and vapor saturated densities of eight kinds of fluids with the results compared with the Peng-Robinson(PR) equation of state and experimental data. Both the MPR and the PR equation of state can accurately describe the dimensionless saturated vapor density. The simulation results for the saturated liquid density given by the MPR agree well with experimental data for simple non-polar fluids such as Ar, N2 and O2. For more complex fluids, the saturated liquid density simulated by both the MPR and the PR equation of state were not good, but the MPR result was better than the PR equation of state result. Generally speaking,the MPR gives better predictions than the PR equation of state for simulations of fluid saturated densities.

Key wordslattice Boltzmann    liquid vapor flow    equation of state    volume translation    saturation density
收稿日期: 2012-12-21      出版日期: 2014-05-15
ZTFLH:     
基金资助:国家自然科学基金资助项目 (51206093,21176133)
引用本文:   
闵琪, 段远源, 王晓东. 格子Boltzmann模型结合MPR方程模拟流体饱和气液密度[J]. 清华大学学报(自然科学版), 2014, 54(5): 619-623.
Qi MIN, Yuanyuan DUAN, Xiaodong WANG. Lattice Boltzmann method for the fluid saturation density based on the volume translated Peng-Robinson equation of state. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 619-623.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2014/V54/I5/619
  PR和MPR状态方程控制下流体饱和气液密度的模拟结果与实验值比较
δa Ar N2 O2 CO2
MPR 0.046 0.056 0.082 0.155
PR 0.363 0.397 0.438 0.298
δa CH4 C2H6 C3H8 C4H10
MPR 0.082 0.186 0.168 0.264
PR 0.394 0.484 0.474 0.469
  MPR和PR方程饱和液相密度模拟绝对偏差比较
[1] 郭照立, 郑楚光, 李青. 流体动力学的格子Boltzmann方法 [M]. 北京: 科学出版社, 2009. GUO Zhaoli, ZHENG Chuguang, LI Qing. Theory and Applications of Lattice Boltzmann Method [M]. Beijing: Science Press, 2009. (in Chinese)
[2] 李维仲, 李爽. 用格子Boltzmann方法模拟液滴合并过程[J]. 热科学与技术, 2007, 6(3): 379-393. LI Weizhong, LI Shuang. Simulation of droplets coalescence process by lattice Boltzmann method[J]. Journal of Thermal Science and Technology, 2007, 6(3): 379-393. (in Chinese)
[3] Swift M R, Orlandini E, Osborn W R, et al.Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J]. Physical Review. E, 1996, 54(5): 5041-5052.
[4] Inamuro T, Ogata T, Tajima S, et al.A lattice Boltzmann method for incompressible two-phase flows with large density differences[J]. Journal of Computational Physics, 2004, 198(2): 628-644.
[5] Grunau D, Chen S Y, Eggert K. A lattice Boltzmann model for multiphase fluid-flows[J]. Physics of Fluids. A, Fluid Dynamics, 1993, 5(10): 2557-2562.
[6] Gunstensen A K, Rothman D H, Zaleski S, et al.Lattice Boltzmann Model of Immiscible Fluids[J]. Physical Review. A, 1991, 43(8): 4320-4327.
[7] Shan X W, Chen H D. Lattice boltzmann model for simulating flows with multiple phases and components[J]. Physical Review. E, 1993, 47(3): 1815-1819.
[8] Raiskinmaki P, Koponen A, Merikoski J, et al.Spreading dynamics of three-dimensional droplets by the lattice- Boltzmann method[J]. Computational Materials Science, 2000, 18(1): 7-12.
[9] Hyvaluoma J, Raiskinmaki P, Jasberg A, et al.Evaluation of a lattice-Boltzmann method for mercury intrusion porosimetry simulations[J]. Future Generation Computer Systems, 2004, 20(6): 1003-1011.
[10] Martys N S, Chen H D. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method[J]. Physical Review. E, 1996, 53(1): 743-750.
[11] Pan C, Hilpert M, Miller C T. Lattice-Boltzmann simulation of two-phase flow in porous media[J]. Water Resources Research, 2004, 40(1).
[12] Qian Y H, Orszag S A. Scalings in diffusion-driven reaction a+B-]C-numerical simulations by lattice BGK models[J]. Journal of Statistical Physics, 1995, 81(1-2): 237-253.
[13] Yuan P, Schaeter L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101.
[14] 林鸿. 气液界面张力的密度梯度理论模型和实验研究 [D]. 北京: 清华大学, 2006. LIN Hong. Gradient Theory Modeling and Experimental Investigation of the Surface Tension [D]. Beijing: Tsinghua University, 2006.(in Chinese)
[15] Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases .1. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525.
[16] Sukop M C, Thorne D T. Lattice Boltzmann Modeling[M]. New York, USA: Springer, 2006.
[17] Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial and Engineering Chemistry, Fundamentals, 1976, 15(1): 59-64.
[18] Tegeler C, Span R, Wagner W. A new equation of state for argon covering thefluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa[J]. Journal of Physical and Chemical Reference Data, 1999, 28(3): 779-850.
[19] Dewan R K, Mehta S K. Correlation between topological features and surface tension of binary liquid mixtures[J]. Monatshefte für Chemie, 1990, 121(8-9): 593-600.
[20] Setzmann U, Wagner W. A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa[J]. Journal of Physical and Chemical Reference Data, 1991, 20(6): 1061-1151.
[21] Friend D G, Ingham H, Ely J F. Thermophysical properties of ethane[J]. Journal of Physical and Chemical Reference Data, 1991, 20(2): 275-347.
[22] Miyamoto H, Watanabe K. A thermodynamic property model for fluid-phase propane[J]. International Journal of Thermophysics, 2000, 21(5): 1045-1072.
[23] Miyamoto H, Watanabe K. Thermodynamic property model for fluid-phase n-Butane[J]. International Journal of Thermophysics, 2001, 22(2): 459-475.
[1] 刘倩, 桂南, 杨星团, 屠基元, 姜胜耀. 竖直通道内饱和蒸汽凝结换热数值模拟[J]. 清华大学学报(自然科学版), 2023, 63(8): 1273-1281.
[2] 周明烁, 丁思宇, 王兴建. 跨/超临界流体大涡模拟状态方程亚格子模型综述[J]. 清华大学学报(自然科学版), 2023, 63(4): 473-486.
[3] 杨家培, 马骁, 雷体蔓, 罗开红, 帅石金. 燃料电池扩散层与流道中液态水传输数值模拟与协同优化[J]. 清华大学学报(自然科学版), 2019, 59(7): 580-586.
[4] 何强, 李永健, 黄伟峰, 李德才, 胡洋, 王玉明. 基于MPI+OpenMP混合编程模式的大规模颗粒两相流LBM并行模拟[J]. 清华大学学报(自然科学版), 2019, 59(10): 847-853.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn