Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2014, Vol. 54 Issue (6): 822-827    
  本期目录 | 过刊浏览 | 高级检索 |
数控速度规划中的过象限摩擦误差约束
方晨曦1,张辉1,叶佩青1(),梁文勇2,李维谦2
2. 甘肃省数控机床工程技术研究中心, 天水 741024
High-speed feed-rate planning with friction error constraints
Chenxi FANG1,Hui ZHANG1,Peiqing YE1(),Wenyong LIANG2,Weiqian LI2
1. Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2. Gansu Engineering Research Center for CNC Machine Tool, Tianshui 741024, China
全文: PDF(1615 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

数控高速加工复杂轨迹时,过象限摩擦误差是轮廓误差的重要来源。将过象限摩擦误差约束加入速度规划模型,能有效弥补伺服系统中的摩擦力反馈补偿缺乏全局信息的缺陷,在保证加工精度的同时实现最优加工效率。首先建立了考虑摩擦影响的机床进给伺服系统动力学模型,结合数学推导与参数正交实验方法,针对光滑复杂轨迹研究了过象限摩擦误差产生机理,提出了系统换向时由摩擦产生的最大跟随误差的预测数学模型,并将其作为约束加入数控速度时间最优规划模型。实验结果表明: 该模型可以较为精确地预测过象限摩擦误差。对比轨迹跟踪结果证明了包含过象限摩擦误差约束的速度规划能有效控制最终轨迹轮廓精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 数控系统进给速度规划轮廓误差摩擦误差    
Abstract

Feed-rate planning models must be accurate to improve contouring performance and efficiency. Quadrant protrusion errors caused by friction forces are an important source of contour error in high-speed contouring of complex curves. A theoretical analysis is given here to describe the relationships among the curvature, feed rate and quadrant protrusion error. Then, experiments with a wide range of parameters are used to develop a friction error model for feed-rate planning with the friction error as a constraint. Tests show that the model can accurately estimate the friction error and guarantee the contour accuracy requirements.

Key wordsnumerical control system    feed-rate planning    contour error    friction error
收稿日期: 2013-11-22      出版日期: 2014-06-15
基金资助:国家“十二五”科技重大专项(2011ZX04004-012)
引用本文:   
方晨曦,张辉,叶佩青,梁文勇,李维谦. 数控速度规划中的过象限摩擦误差约束[J]. 清华大学学报(自然科学版), 2014, 54(6): 822-827.
Chenxi FANG,Hui ZHANG,Peiqing YE,Wenyong LIANG,Weiqian LI. High-speed feed-rate planning with friction error constraints. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 822-827.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2014/V54/I6/822
  进给系统结构示意图
  r=10 mm v=1 m/min实验轨迹轮廓误差与机床位移图
  实验数据拟合曲线
  实验设备
  实验测试路径
  无过象限摩擦约束速度规划结果图
  包含过象限摩擦约束速度规划结果
  X轴换向点处实测轨迹
[1] SHI Chuan, YE Peiqing. The look-ahead function-based interpolation algorithm for continuous micro-line trajectories[J]. International Journal of Advanced Manufacturing Technology, 2011, 54(5-8): 649-668.
[2] ZHANG Lixian, SUN Ruiyong, GAO Xiaoshan, et al.High speed interpolation for micro-line trajectory and adaptive real-time look-ahead scheme in CNC machining[J]. Science China: Technological Sciences, 2011, 54(6): 1481-1495.
[3] Sencer B, Altintas Y, Croft E. Feed optimization for five-axis CNC machine tools with drive constraints[J]. International Journal of Machine Tools & Manufacture, 2008, 48(7/8): 733-745.
[4] FAN Wei, GAO Xiaoshan, YAN Wei, et al.Interpolation of parametric CNC machining path under confined jounce[J]. International Journal of Advanced Manufacturing Technology, 2012, 62(5-8): 719-739.
[5] ZHANG Qiang, LI Shurong, GUO Jianxin. Smooth time-optimal tool trajectory generation for CNC manufacturing systems[J]. Journal of Manufacturing Systems, 2012, 31(3): 280-287.
[6] Renton D, Elbestawi M A. High speed servo control of multi-axis machine tools[J]. International Journal of Machine Tools & Manufacture, 2000, 40(4): 539-559.
[7] Dong J, Stori J A. Optimal feed-rate scheduling for high-speed contouring[J]. Journal of Manufacturing Science and Engineering: Transactions of the ASME, 2007, 129(1): 63-76.
[8] ZHANG Ke, YUAN Chunming, GAO Xiaoshan. Efficient algorithm for time-optimal feedrate planning and smoothing with confined chord error and acceleration[J]. International Journal of Advanced Manufacturing Technology, 2013, 66(9-12): 1685-1697.
[9] Guesalaga A. Modelling end-of-roll dynamics in positioning servos[J]. Control Engineering Practice, 2004, 12(2): 217-224.
[10] Karnopp D. Computer-simulation of stick-slip friction in mechanical dynamic-systems[J]. Journal of Dynamic Systems Measurement and Control: Transactions of the ASME, 1985, 107(1): 100-103.
[11] Polycarpou A A, Soom A. A two-component mixed friction model for a lubricated line contact[J]. Journal of Tribology: Transactions of the ASME, 1996, 118(1): 183-189.
[12] Armstrong B, Dupont P, Dewit C C. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica, 1994, 30(7): 1083-1138.
[13] Menon K, Krishnamurthy K. Control of low velocity friction and gear backlash in a machine tool feed drive system[J]. Mechatronics, 1999, 9(1): 33-52.
[14] MEI Xuesong, Tsutsumi M, TAO Tao, et al.Study on the compensation of error by stick-slip for high-precision table[J]. Journal of Machine Tools & Manufacture, 2004, 44(5): 503-510.
[15] MEI Xuesong, Tsutsumi M, Yamazaki T, et al.Study of the friction error for a high-speed high precision table[J]. International Journal of Machine Tools & Manufacture, 2001, 41(10): 1405-1415.
[1] 张云, 梁光顺, 张赟, 李燕. 一种基于轮廓误差的NC数据补偿方法[J]. 清华大学学报(自然科学版), 2022, 62(12): 1989-1995.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn