Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2014, Vol. 54 Issue (6): 834-838    
  本期目录 | 过刊浏览 | 高级检索 |
湍流预混射流火焰直接模拟中入口条件的确定
吴韶华,张健()
Inlet conditions for direct numerical simulations of turbulent premixed jet flames
Shaohua WU,Jian ZHANG()
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
全文: PDF(1265 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

该文对甲烷-空气湍流平面射流预混火焰进行了直接数值模拟。射流入口的扰动速度数据依据给定的湍流能谱生成,利用入口处的湍流积分长度尺度和湍动能确定了能谱的峰值波数。计算结果给出了气体温度、质量分数和涡量模的瞬态分布,表明在剪切层内随着旋涡尺度的增大出现了拟序结构。化学反应受到湍流的作用,瞬时反应面出现了明显的皱折,反应面积增大。沿射流中心线,湍动能逐渐衰减,温度脉动和甲烷质量分数脉动均方根值则逐渐增大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 湍流平面射流火焰预混火焰直接数值模拟入口条件速度扰动    
Abstract

Methane-air turbulent premixed planar jet flames are simulated using direct numerical simulations. A fluctuating velocity field at the jet inflow boundary is generated based on a prescribed turbulent energy spectrum. The peak wavenumber in the energy spectrum is determined from the turbulent integral length scale and turbulent kinetic energy at the jet inlet. The model also gives the instantaneous distributions of the gas temperature, species concentrations, and vorticity. The results show that coherent structures in the shear layer gradually appear as the eddy sizes increase. The chemical reactions are affected by the turbulence and the instantaneous reaction surface is quite wrinkled with its area increase. The turbulent kinetic energy gradually decreases, while the root mean squares of the temperature and methane concentration fluctuations increase along the jet centerline.

Key wordsturbulent planar jet flame    premixed flame    direct numerical simulation    inlet condition    fluctuating velocity
收稿日期: 2011-08-19      出版日期: 2014-06-15
基金资助:国家自然科学基金资助项目(51390493,51076082)
引用本文:   
吴韶华,张健. 湍流预混射流火焰直接模拟中入口条件的确定[J]. 清华大学学报(自然科学版), 2014, 54(6): 834-838.
Shaohua WU,Jian ZHANG. Inlet conditions for direct numerical simulations of turbulent premixed jet flames. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 834-838.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2014/V54/I6/834
  气体温度、甲烷质量分数、反应速率与涡量模的瞬时分布
  气体湍动能和温度与甲烷质量分数脉动均方根值沿射流中心线的分布
[1] Klein M, Sadiki A, Janicka J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations[J]. Journal of Computational Physics, 2003, 186: 652-665.
[2] Sankaran R, Hawkes E R, Chen J H, et al.Structure of a spatially developing turbulent lean methane-air Bunsen flame[J]. Proceedings of the Combustion Institute, 2007, 31: 1291-1298.
[3] Klein M, Sadiki A, Janicka J. Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation[J]. International Journal of Heat and Fluid Flow, 2003, 24: 785-794.
[4] Lee S, Lele S K, Moin P. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow[J]. Physics of Fluids A, 1992, 4: 1521-1530.
[5] Le H, Moin P, Kim J. Direct numerical simulation of turbulent flow over a backward-facing step[J]. Journal of Fluid Mechanics, 1997, 330: 349-374.
[6] Stanley S A, Sarkar S, Mellado J P. A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[J]. Journal of Fluid Mechanics, 2002, 450: 377-407.
[7] Hawkes E R, Sankaran R, Sutherland J C, et al.Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2kinetics[J]. Proceedings of the Combustion Institute, 2007, 31: 1633-1640.
[8] Kennedy C A, Carpenter M H. Several new numerical methods for compressible shear-layer simulations[J]. Applied Numerical Mathematics, 1994, 14: 397-433.
[9] Kennedy C A, Carpenter M H, Lewis R H. Low-storage, explicit Runge-Kutta scheme for the compressible Navier-Stokes equations[J]. Applied Numerical Mathematics, 2000, 35: 177-219.
[10] Poinsot T, Veynante D. Theoretical and Numerical Combustion[M]. 2 Ed. Philadelphia, PA, USA: Edwards, 2005.
[11] Gu X J, Hao M Z, Lawes M, et al.Laminar burning velocity and Markstein lengths of methane-air mixtures[J]. Combustion and Flame, 2000, 121: 41-58.
[12] Sutherland J C, Kennedy C A. Improved boundary conditons for viscous, reacting compressible flows[J]. Journal of Computational Physics, 2003, 191: 502-524.
[13] Sutherland J C. Evaluation of Mixing and Reacting Models for Large-Eddy Simulation of Nonpremixed Combustion Using Direct Numerical Simulation [D]. Salt Lake City, UT, USA: University of Utah, 2004.
[14] Haworth D C, Poinsot T J. Numerical simulations of Lewis number effects in turbulent premixed flames[J].Journal of Fluid Mechanics, 1992, 244: 405-436.
[15] Rogallo R S. Numerical Experiments in Homogeneous Turbulence, NASA-TM-81315 [R]. Moffett Field, CA, USA: NASA Ames Research Center, 1981.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn